-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeras_sample_cifar10.py
99 lines (82 loc) · 3.52 KB
/
keras_sample_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python3
import time
import numpy as np
import matplotlib.pyplot as plt
from keras.utils import np_utils
from keras.datasets import cifar10
from keras.models import Sequential
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense
def summary(history):
# plot loss
plt.subplot(211)
plt.title('Cross Entropy Loss')
plt.plot(history.history['loss'], color='blue', label='train')
plt.plot(history.history['val_loss'], color='orange', label='test')
plt.legend(loc=0)
# plot accuracy
plt.subplot(212)
plt.title('Classification Accuracy')
plt.plot(history.history['accuracy'], color='blue', label='train')
plt.plot(history.history['val_accuracy'], color='orange', label='test')
plt.legend(loc=0)
# save plot to file
plt.subplots_adjust(wspace=None, hspace=1.0)
filename = time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime())
plt.savefig(filename + ".png")
plt.close()
def mdlTrain(train_feature, train_label, test_feature, test_label):
# model definition
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu', input_shape=(32, 32, 3)))
model.add(Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Dropout(0.25))
model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu'))
model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(units=512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(units=10, activation='softmax'))
print(model.summary())
# training definition
batch_num = 64
epoch_num = 100
opt = RMSprop(lr=0.0001, decay=1e-6)
datagen = ImageDataGenerator(rotation_range=15, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True)
datagen.fit(train_feature)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
history = model.fit_generator(datagen.flow(train_feature, train_label, batch_size=batch_num), \
steps_per_epoch=int(len(train_feature) / batch_num), epochs=epoch_num, validation_data=(test_feature, test_label), verbose=2)
summary(history)
# accuracy evaluation
accuracy = model.evaluate(test_feature, test_label)
print('\n[Accuracy] = ', accuracy[1])
return model
# ---------------------------------------------------------------------------
# load cifar10 data
(train_feature, train_label), (test_feature, test_label) = cifar10.load_data()
# data preprocessing
# reshape
train_feature_vector = train_feature.reshape(len(train_feature), 32, 32, 3).astype('float32')
test_feature_vector = test_feature.reshape(len(test_feature), 32, 32, 3).astype('float32')
# feature normalization
#z-score
mean = np.mean(train_feature_vector, axis=(0, 1, 2, 3))
std = np.std(train_feature_vector, axis=(0, 1, 2, 3))
train_feature_normal = (train_feature_vector - mean) / (std + 1e-7)
test_feature_normal = (test_feature_vector - mean) / (std + 1e-7)
# one-hot encoding
train_label_onehot = np_utils.to_categorical(train_label)
test_label_onehot = np_utils.to_categorical(test_label)
# train model
model = mdlTrain(train_feature_normal, train_label_onehot, test_feature_normal, test_label_onehot)
accuracy = model.evaluate(test_feature_normal, test_label_onehot)
print('\n[Accuracy] = ', accuracy)
# save model
filename = time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime())
model.save(filename + ".h5")
del model