-
Notifications
You must be signed in to change notification settings - Fork 9
/
evaluation_bnn.py
128 lines (107 loc) · 4.67 KB
/
evaluation_bnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os, sys
import os.path as osp
import numpy as np
import pickle
import torch
import torch.optim
import torch.utils.data
from main_utils import *
from utils import geometry
from evaluation_utils import evaluate_2d, evaluate_3d
TOTAL_NUM_SAMPLES = 0
def evaluate(val_loader, model, logger, args):
save_idx = 0
num_sampled_batches = TOTAL_NUM_SAMPLES // args.batch_size
# sample data for visualization
if TOTAL_NUM_SAMPLES == 0:
sampled_batch_indices = []
else:
if len(val_loader) > num_sampled_batches:
print('num_sampled_batches', num_sampled_batches)
print('len(val_loader)', len(val_loader))
sep = len(val_loader) // num_sampled_batches
sampled_batch_indices = list(range(len(val_loader)))[::sep]
else:
sampled_batch_indices = range(len(val_loader))
save_dir = osp.join(args.ckpt_dir, 'visu_' + osp.split(args.ckpt_dir)[-1])
os.makedirs(save_dir, exist_ok=True)
path_list = []
epe3d_list = []
epe3ds = AverageMeter()
acc3d_stricts = AverageMeter()
acc3d_relaxs = AverageMeter()
outliers = AverageMeter()
# 2D
epe2ds = AverageMeter()
acc2ds = AverageMeter()
model.eval()
with torch.no_grad():
for i, items in enumerate(val_loader):
pc1, pc2, sf, generated_data, path = items
output = model(pc1, pc2, generated_data)
pc1_np = pc1.numpy()
pc1_np = pc1_np.transpose((0,2,1))
pc2_np = pc2.numpy()
pc2_np = pc2_np.transpose((0,2,1))
sf_np = sf.numpy()
sf_np = sf_np.transpose((0,2,1))
output_np = output.cpu().numpy()
output_np = output_np.transpose((0,2,1))
EPE3D, acc3d_strict, acc3d_relax, outlier = evaluate_3d(output_np, sf_np)
epe3ds.update(EPE3D)
acc3d_stricts.update(acc3d_strict)
acc3d_relaxs.update(acc3d_relax)
outliers.update(outlier)
# 2D evaluation metrics
flow_pred, flow_gt = geometry.get_batch_2d_flow(pc1_np,
pc1_np+sf_np,
pc1_np+output_np,
path)
EPE2D, acc2d = evaluate_2d(flow_pred, flow_gt)
epe2ds.update(EPE2D)
acc2ds.update(acc2d)
if i % args.print_freq == 0:
logger.log('Test: [{0}/{1}]\t'
'EPE3D {epe3d_.val:.4f} ({epe3d_.avg:.4f})\t'
'ACC3DS {acc3d_s.val:.4f} ({acc3d_s.avg:.4f})\t'
'ACC3DR {acc3d_r.val:.4f} ({acc3d_r.avg:.4f})\t'
'Outliers3D {outlier_.val:.4f} ({outlier_.avg:.4f})\t'
'EPE2D {epe2d_.val:.4f} ({epe2d_.avg:.4f})\t'
'ACC2D {acc2d_.val:.4f} ({acc2d_.avg:.4f})'
.format(i + 1, len(val_loader),
epe3d_=epe3ds,
acc3d_s=acc3d_stricts,
acc3d_r=acc3d_relaxs,
outlier_=outliers,
epe2d_=epe2ds,
acc2d_=acc2ds,
))
if i in sampled_batch_indices:
np.save(osp.join(save_dir, 'pc1_' + str(save_idx) + '.npy'), pc1_np)
np.save(osp.join(save_dir, 'sf_' + str(save_idx) + '.npy'), sf_np)
np.save(osp.join(save_dir, 'output_' + str(save_idx) + '.npy'), output_np)
np.save(osp.join(save_dir, 'pc2_' + str(save_idx) + '.npy'), pc2_np)
epe3d_list.append(EPE3D)
path_list.extend(path)
save_idx += 1
del pc1, pc2, sf, generated_data
if len(path_list) > 0:
np.save(osp.join(save_dir, 'epe3d_per_frame.npy'), np.array(epe3d_list))
with open(osp.join(save_dir, 'sample_path_list.pickle'), 'wb') as fd:
pickle.dump(path_list, fd)
res_str = (' * EPE3D {epe3d_.avg:.4f}\t'
'ACC3DS {acc3d_s.avg:.4f}\t'
'ACC3DR {acc3d_r.avg:.4f}\t'
'Outliers3D {outlier_.avg:.4f}\t'
'EPE2D {epe2d_.avg:.4f}\t'
'ACC2D {acc2d_.avg:.4f}'
.format(
epe3d_=epe3ds,
acc3d_s=acc3d_stricts,
acc3d_r=acc3d_relaxs,
outlier_=outliers,
epe2d_=epe2ds,
acc2d_=acc2ds,
))
logger.log(res_str)
return res_str