-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiris.py
55 lines (45 loc) · 1.74 KB
/
iris.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 21 20:57:14 2019
@author: lanziyun
"""
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
iris = pd.read_csv("C:/Users/lanziyun/Desktop/機器學習/iris.csv")
Class = {'Iris-setosa': 0, 'Iris-versicolor':1, 'Iris-virginica':2}
iris['class'] = iris['class'].map(Class)
print(iris)
sns.pairplot(iris, hue="class", size=2)
X = iris[['sepal length','sepal width','petal length','petal width']]
y = iris[['class']]
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 5, test_size = 0.2)
clf = LogisticRegression()
clf2 = KNeighborsClassifier()
clf3 = LinearDiscriminantAnalysis()
clf.fit(X_train, y_train)
clf2.fit(X_train, y_train)
clf3.fit(X_train, y_train)
predictclass = clf.predict(X_test)
predictclass2 = clf2.predict(X_test)
predictclass3 = clf3.predict(X_test)
print("Logistic acc is: %.4f" % accuracy_score(y_test, predictclass))
print(confusion_matrix(y_test, predictclass))
print(classification_report(y_test, predictclass))
print(clf)
print("KNN acc is: %.4f" % accuracy_score(y_test, predictclass2))
print(confusion_matrix(y_test, predictclass2))
print(classification_report(y_test, predictclass2))
print(clf2)
print("DA acc is: %.4f" % accuracy_score(y_test, predictclass3))
print(confusion_matrix(y_test, predictclass3))
print(classification_report(y_test, predictclass3))
print(clf3)