-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathmain_pit.py
256 lines (238 loc) · 8.1 KB
/
main_pit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from __future__ import division
import torch
import os
from model import *
from torch import optim
import torch.nn as nn
from datetime import datetime
from torch_util import *
import config
import tqdm
import data_loader
import sys
import time
from datetime import timedelta
from os.path import expanduser
from torchtext.vocab import load_word_vectors
def create_batch(data,from_index, to_index):
if to_index>len(data):
to_index=len(data)
lsize=0
rsize=0
lsize_list=[]
rsize_list=[]
for i in range(from_index, to_index):
length=len(data[i][0])+2
lsize_list.append(length)
if length>lsize:
lsize=length
length=len(data[i][1])+2
rsize_list.append(length)
if length>rsize:
rsize=length
#lsize+=1
#rsize+=1
lsent = data[from_index][0]
lsent = ['bos']+lsent + ['oov' for k in range(lsize -1 - len(lsent))]
#print(lsent)
left_sents = [[word2id[word] for word in lsent]]
#left_sents = torch.cat((dict[word].view(1, -1) for word in lsent))
#left_sents = torch.unsqueeze(left_sents,0)
rsent = data[from_index][1]
rsent = ['bos']+rsent + ['oov' for k in range(rsize -1 - len(rsent))]
#print(rsent)
right_sents = [[word2id[word] for word in rsent]]
#right_sents = torch.cat((dict[word].view(1, -1) for word in rsent))
#right_sents = torch.unsqueeze(right_sents,0)
labels=[data[from_index][2]]
for i in range(from_index+1, to_index):
lsent=data[i][0]
lsent=['bos']+lsent+['oov' for k in range(lsize -1 - len(lsent))]
#print(lsent)
left_sents.append([word2id[word] for word in lsent])
#left_sent = torch.cat((dict[word].view(1,-1) for word in lsent))
#left_sent = torch.unsqueeze(left_sent, 0)
#left_sents = torch.cat([left_sents, left_sent])
rsent=data[i][1]
rsent=['bos']+rsent+['oov' for k in range(rsize -1 - len(rsent))]
#print(rsent)
right_sents.append([word2id[word] for word in rsent])
#right_sent = torch.cat((dict[word].view(1,-1) for word in rsent))
#right_sent = torch.unsqueeze(right_sent, 0)
#right_sents = torch.cat((right_sents, right_sent))
labels.append(data[i][2])
left_sents=Variable(torch.LongTensor(left_sents))
right_sents=Variable(torch.LongTensor(right_sents))
if task=='sts':
labels=Variable(torch.Tensor(labels))
else:
labels=Variable(torch.LongTensor(labels))
lsize_list=torch.LongTensor(lsize_list)
rsize_list =torch.LongTensor(rsize_list)
if torch.cuda.is_available():
left_sents=left_sents.cuda()
right_sents=right_sents.cuda()
labels=labels.cuda()
lsize_list=lsize_list.cuda()
rsize_list=rsize_list.cuda()
#print(left_sents)
#print(right_sents)
return left_sents, right_sents, labels, lsize_list, rsize_list
if __name__ == '__main__':
task='pit'
print('task: '+task)
torch.manual_seed(6)
num_class = 2
if torch.cuda.is_available():
print('CUDA is available!')
basepath = expanduser("~") + '/pytorch/DeepPairWiseWord/data/pit'
embedding_path = expanduser("~") + '/pytorch/DeepPairWiseWord/VDPWI-NN-Torch/data/glove'
else:
basepath = expanduser("~") + '/Documents/research/pytorch/DeepPairWiseWord/data/pit'
embedding_path = expanduser("~") + '/Documents/research/pytorch/DeepPairWiseWord/VDPWI-NN-Torch/data/glove'
train_pairs = readQuoradata(basepath + '/train/')
#dev_pairs = readQuoradata(basepath + '/dev/')
test_pairs = readQuoradata(basepath + '/test/')
dev_pairs=test_pairs
tokens = []
dict={}
word2id={}
vocab = set()
for pair in train_pairs:
left = pair[0]
right = pair[1]
vocab |= set(left)
vocab |= set(right)
for pair in dev_pairs:
left = pair[0]
right = pair[1]
vocab |= set(left)
vocab |= set(right)
for pair in test_pairs:
left = pair[0]
right = pair[1]
vocab |= set(left)
vocab |= set(right)
tokens=list(vocab)
#for line in open(basepath + '/vocab.txt'):
# tokens.append(line.strip().decode('utf-8'))
wv_dict, wv_arr, wv_size = load_word_vectors(embedding_path, 'glove.840B', 300)
#embedding = []
tokens.append('oov')
tokens.append('bos')
pretrained_emb = np.zeros(shape=(len(tokens), 300))
oov={}
for id in range(100):
oov[id]=torch.normal(torch.zeros(300),std=1)
id=0
for word in tokens:
try:
dict[word] = wv_arr[wv_dict[word]]/torch.norm(wv_arr[wv_dict[word]])
#print(word)
except:
dict[word] = torch.normal(torch.zeros(300),std=1)
word2id[word]=id
pretrained_emb[id] = dict[word].numpy()
id+=1
model = StackBiLSTMMaxout(h_size=[512, 1024, 2048], v_size=10, d=300, mlp_d=1600, dropout_r=0.1, max_l=60, num_class=num_class)
if torch.cuda.is_available():
pretrained_emb=torch.Tensor(pretrained_emb).cuda()
else:
pretrained_emb = torch.Tensor(pretrained_emb)
model.Embd.weight.data = pretrained_emb
if torch.cuda.is_available():
model.cuda()
start_lr = 2e-4
batch_size=32
report_interval=1000
optimizer = optim.Adam(model.parameters(), lr=start_lr)
criterion = nn.CrossEntropyLoss()
iterations = 0
best_m_dev = -1
best_um_dev = -1
best_dev_loss=10e10
best_result=0
print('start training...')
for epoch in range(20):
batch_counter = 0
accumulated_loss = 0
model.train()
print('--' * 20)
start_time = time.time()
i_decay = epoch / 2
lr = start_lr / (2 ** i_decay)
print(lr)
train_pairs = np.array(train_pairs)
rand_idx = np.random.permutation(len(train_pairs))
train_pairs = train_pairs[rand_idx]
train_batch_i = 0
train_num_correct=0
train_sents_scaned = 0
while train_batch_i < len(train_pairs):
left_sents, right_sents, labels, lsize_list, rsize_list = create_batch(train_pairs, train_batch_i, train_batch_i+batch_size)
train_sents_scaned += len(labels)
train_batch_i+=len(labels)
left_sents=torch.transpose(left_sents,0,1)
right_sents=torch.transpose(right_sents,0,1)
output=model(left_sents,lsize_list,right_sents,rsize_list)
result = output.data.cpu().numpy()
a = np.argmax(result, axis=1)
b = labels.data.cpu().numpy()
train_num_correct += np.sum(a == b)
loss = criterion(output, labels)
optimizer.zero_grad()
for pg in optimizer.param_groups:
pg['lr'] = lr
loss.backward()
optimizer.step()
batch_counter += 1
accumulated_loss += loss.data[0]
if batch_counter % report_interval == 0:
msg = '%d completed epochs, %d batches' % (epoch, batch_counter)
msg += '\t train batch loss: %f' % (accumulated_loss / train_sents_scaned)
msg += '\t train accuracy: %f' % (train_num_correct / train_sents_scaned)
print(msg)
# valid after each epoch
model.eval()
dev_batch_index = 0
dev_num_correct = 0
msg = '%d completed epochs, %d batches' % (epoch, batch_counter)
accumulated_loss = 0
dev_batch_i = 0
pred=[]
gold=[]
while dev_batch_i < len(dev_pairs):
left_sents, right_sents, labels, lsize_list, rsize_list = create_batch(dev_pairs, dev_batch_i,
dev_batch_i+batch_size)
dev_batch_i += len(labels)
left_sents = torch.transpose(left_sents, 0, 1)
right_sents = torch.transpose(right_sents, 0, 1)
output = F.softmax(model(left_sents, lsize_list,right_sents, rsize_list))
result = output.data.cpu().numpy()
loss = criterion(output, labels)
accumulated_loss += loss.data[0]
a = np.argmax(result, axis=1)
b = labels.data.cpu().numpy()
dev_num_correct += np.sum(a == b)
if task=='pit' or task=='url' or task=='wikiqa' or task=='trecqa':
pred.extend(result[:,1])
gold.extend(b)
if task=='sts':
pred.extend(0*result[:,0]+1*result[:,1]+2*result[:,2]+3*result[:,3]+4*result[:,4]+5*result[:,5])
gold.extend(0*b[:,0]+1*b[:,1]+2*b[:,2]+3*b[:,3]+4*b[:,4]+5*b[:,5])
msg += '\t dev loss: %f' % (accumulated_loss/len(dev_pairs))
dev_acc = dev_num_correct / len(dev_pairs)
msg += '\t dev accuracy: %f' % dev_acc
print(msg)
if task=='pit' or task=='url'or task=='wikiqa' or task=='trecqa':
_,my_result=URL_maxF1_eval(pred, gold)
elif task=='sts':
print('pearson: '+str(pearson(pred,gold)))
if my_result > best_result:
best_result=my_result
torch.save(model, basepath+'/model_SSE_'+task+'.pkl')
with open(basepath + '/result_prob_SSE_' + task, 'w') as f:
for i in range(len(pred)):
f.writelines(str(1 - pred[i]) + '\t' + str(pred[i]) + '\n')
elapsed_time = time.time() - start_time
print('Epoch ' + str(epoch) + ' finished within ' + str(timedelta(seconds=elapsed_time)))