Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions libs/langchain/langchain/chat_models/anthropic.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ def _convert_one_message_to_text(
elif isinstance(message, AIMessage):
message_text = f"{ai_prompt} {message.content}"
elif isinstance(message, SystemMessage):
message_text = f"{human_prompt} <admin>{message.content}</admin>"
message_text = message.content
else:
raise ValueError(f"Got unknown type {message}")
return message_text
Expand All @@ -56,7 +56,6 @@ def convert_messages_to_prompt_anthropic(
"""

messages = messages.copy() # don't mutate the original list

if not isinstance(messages[-1], AIMessage):
messages.append(AIMessage(content=""))

Expand Down
4 changes: 2 additions & 2 deletions libs/langchain/langchain/llms/bedrock.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,12 +42,12 @@ def _human_assistant_format(input_text: str) -> str:
if count % 2 == 0:
count += 1
else:
raise ValueError(ALTERNATION_ERROR)
raise ValueError(ALTERNATION_ERROR + f" Received {input_text}")
if input_text[i : i + len(ASSISTANT_PROMPT)] == ASSISTANT_PROMPT:
if count % 2 == 1:
count += 1
else:
raise ValueError(ALTERNATION_ERROR)
raise ValueError(ALTERNATION_ERROR + f" Received {input_text}")

if count % 2 == 1: # Only saw Human, no Assistant
input_text = input_text + ASSISTANT_PROMPT # SILENT CORRECTION
Expand Down
29 changes: 21 additions & 8 deletions libs/langchain/tests/unit_tests/chat_models/test_anthropic.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@

from langchain.chat_models import ChatAnthropic
from langchain.chat_models.anthropic import convert_messages_to_prompt_anthropic
from langchain.schema import AIMessage, BaseMessage, HumanMessage
from langchain.schema import AIMessage, BaseMessage, HumanMessage, SystemMessage

os.environ["ANTHROPIC_API_KEY"] = "foo"

Expand Down Expand Up @@ -50,11 +50,24 @@ def test_anthropic_initialization() -> None:
ChatAnthropic(model="test", anthropic_api_key="test")


def test_formatting() -> None:
messages: List[BaseMessage] = [HumanMessage(content="Hello")]
@pytest.mark.parametrize(
("messages", "expected"),
[
([HumanMessage(content="Hello")], "\n\nHuman: Hello\n\nAssistant:"),
(
[HumanMessage(content="Hello"), AIMessage(content="Answer:")],
"\n\nHuman: Hello\n\nAssistant: Answer:",
),
(
[
SystemMessage(content="You're an assistant"),
HumanMessage(content="Hello"),
AIMessage(content="Answer:"),
],
"You're an assistant\n\nHuman: Hello\n\nAssistant: Answer:",
),
],
)
def test_formatting(messages: List[BaseMessage], expected: str) -> None:
result = convert_messages_to_prompt_anthropic(messages)
assert result == "\n\nHuman: Hello\n\nAssistant:"

messages = [HumanMessage(content="Hello"), AIMessage(content="Answer:")]
result = convert_messages_to_prompt_anthropic(messages)
assert result == "\n\nHuman: Hello\n\nAssistant: Answer:"
assert result == expected