|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "a4734146", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# LLM Math\n", |
| 9 | + "\n", |
| 10 | + "Evaluating chains that know how to do math." |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "code", |
| 15 | + "execution_count": 6, |
| 16 | + "id": "fdd7afae", |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [], |
| 19 | + "source": [ |
| 20 | + "# Comment this out if you are NOT using tracing\n", |
| 21 | + "import os\n", |
| 22 | + "os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\"" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "code", |
| 27 | + "execution_count": 7, |
| 28 | + "id": "ce05ffea", |
| 29 | + "metadata": {}, |
| 30 | + "outputs": [ |
| 31 | + { |
| 32 | + "data": { |
| 33 | + "application/vnd.jupyter.widget-view+json": { |
| 34 | + "model_id": "d028a511cede4de2b845b9a9954d6bea", |
| 35 | + "version_major": 2, |
| 36 | + "version_minor": 0 |
| 37 | + }, |
| 38 | + "text/plain": [ |
| 39 | + "Downloading readme: 0%| | 0.00/21.0 [00:00<?, ?B/s]" |
| 40 | + ] |
| 41 | + }, |
| 42 | + "metadata": {}, |
| 43 | + "output_type": "display_data" |
| 44 | + }, |
| 45 | + { |
| 46 | + "name": "stdout", |
| 47 | + "output_type": "stream", |
| 48 | + "text": [ |
| 49 | + "Downloading and preparing dataset json/LangChainDatasets--llm-math to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--llm-math-509b11d101165afa/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51...\n" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "data": { |
| 54 | + "application/vnd.jupyter.widget-view+json": { |
| 55 | + "model_id": "a71c8e5a21dd4da5a20a354b544f7a58", |
| 56 | + "version_major": 2, |
| 57 | + "version_minor": 0 |
| 58 | + }, |
| 59 | + "text/plain": [ |
| 60 | + "Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]" |
| 61 | + ] |
| 62 | + }, |
| 63 | + "metadata": {}, |
| 64 | + "output_type": "display_data" |
| 65 | + }, |
| 66 | + { |
| 67 | + "data": { |
| 68 | + "application/vnd.jupyter.widget-view+json": { |
| 69 | + "model_id": "ae530ca624154a1a934075c47d1093a6", |
| 70 | + "version_major": 2, |
| 71 | + "version_minor": 0 |
| 72 | + }, |
| 73 | + "text/plain": [ |
| 74 | + "Downloading data: 0%| | 0.00/631 [00:00<?, ?B/s]" |
| 75 | + ] |
| 76 | + }, |
| 77 | + "metadata": {}, |
| 78 | + "output_type": "display_data" |
| 79 | + }, |
| 80 | + { |
| 81 | + "data": { |
| 82 | + "application/vnd.jupyter.widget-view+json": { |
| 83 | + "model_id": "7a4968df05d84bc483aa2c5039aecafe", |
| 84 | + "version_major": 2, |
| 85 | + "version_minor": 0 |
| 86 | + }, |
| 87 | + "text/plain": [ |
| 88 | + "Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]" |
| 89 | + ] |
| 90 | + }, |
| 91 | + "metadata": {}, |
| 92 | + "output_type": "display_data" |
| 93 | + }, |
| 94 | + { |
| 95 | + "data": { |
| 96 | + "application/vnd.jupyter.widget-view+json": { |
| 97 | + "model_id": "", |
| 98 | + "version_major": 2, |
| 99 | + "version_minor": 0 |
| 100 | + }, |
| 101 | + "text/plain": [ |
| 102 | + "Generating train split: 0 examples [00:00, ? examples/s]" |
| 103 | + ] |
| 104 | + }, |
| 105 | + "metadata": {}, |
| 106 | + "output_type": "display_data" |
| 107 | + }, |
| 108 | + { |
| 109 | + "name": "stdout", |
| 110 | + "output_type": "stream", |
| 111 | + "text": [ |
| 112 | + "Dataset json downloaded and prepared to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--llm-math-509b11d101165afa/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51. Subsequent calls will reuse this data.\n" |
| 113 | + ] |
| 114 | + }, |
| 115 | + { |
| 116 | + "data": { |
| 117 | + "application/vnd.jupyter.widget-view+json": { |
| 118 | + "model_id": "9a2caed96225410fb1cc0f8f155eb766", |
| 119 | + "version_major": 2, |
| 120 | + "version_minor": 0 |
| 121 | + }, |
| 122 | + "text/plain": [ |
| 123 | + " 0%| | 0/1 [00:00<?, ?it/s]" |
| 124 | + ] |
| 125 | + }, |
| 126 | + "metadata": {}, |
| 127 | + "output_type": "display_data" |
| 128 | + } |
| 129 | + ], |
| 130 | + "source": [ |
| 131 | + "from langchain.evaluation.loading import load_dataset\n", |
| 132 | + "dataset = load_dataset(\"llm-math\")" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "markdown", |
| 137 | + "id": "8a998d6f", |
| 138 | + "metadata": {}, |
| 139 | + "source": [ |
| 140 | + "## Setting up a chain\n", |
| 141 | + "Now we need to create some pipelines for doing math." |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "code", |
| 146 | + "execution_count": 10, |
| 147 | + "id": "7078f7f8", |
| 148 | + "metadata": {}, |
| 149 | + "outputs": [], |
| 150 | + "source": [ |
| 151 | + "from langchain.llms import OpenAI\n", |
| 152 | + "from langchain.chains import LLMMathChain" |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "code", |
| 157 | + "execution_count": 9, |
| 158 | + "id": "2bd70c46", |
| 159 | + "metadata": {}, |
| 160 | + "outputs": [], |
| 161 | + "source": [ |
| 162 | + "llm = OpenAI()" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "code", |
| 167 | + "execution_count": 11, |
| 168 | + "id": "954c3270", |
| 169 | + "metadata": {}, |
| 170 | + "outputs": [], |
| 171 | + "source": [ |
| 172 | + "chain = LLMMathChain(llm=llm)" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "code", |
| 177 | + "execution_count": 13, |
| 178 | + "id": "f252027e", |
| 179 | + "metadata": {}, |
| 180 | + "outputs": [], |
| 181 | + "source": [ |
| 182 | + "predictions = chain.apply(dataset)" |
| 183 | + ] |
| 184 | + }, |
| 185 | + { |
| 186 | + "cell_type": "code", |
| 187 | + "execution_count": 22, |
| 188 | + "id": "c8af7041", |
| 189 | + "metadata": {}, |
| 190 | + "outputs": [], |
| 191 | + "source": [ |
| 192 | + "numeric_output = [float(p['answer'].strip().strip(\"Answer: \")) for p in predictions]" |
| 193 | + ] |
| 194 | + }, |
| 195 | + { |
| 196 | + "cell_type": "code", |
| 197 | + "execution_count": 23, |
| 198 | + "id": "cc09ffe4", |
| 199 | + "metadata": {}, |
| 200 | + "outputs": [], |
| 201 | + "source": [ |
| 202 | + "correct = [example['answer'] == numeric_output[i] for i, example in enumerate(dataset)]" |
| 203 | + ] |
| 204 | + }, |
| 205 | + { |
| 206 | + "cell_type": "code", |
| 207 | + "execution_count": 24, |
| 208 | + "id": "585244e4", |
| 209 | + "metadata": {}, |
| 210 | + "outputs": [ |
| 211 | + { |
| 212 | + "data": { |
| 213 | + "text/plain": [ |
| 214 | + "1.0" |
| 215 | + ] |
| 216 | + }, |
| 217 | + "execution_count": 24, |
| 218 | + "metadata": {}, |
| 219 | + "output_type": "execute_result" |
| 220 | + } |
| 221 | + ], |
| 222 | + "source": [ |
| 223 | + "sum(correct) / len(correct)" |
| 224 | + ] |
| 225 | + }, |
| 226 | + { |
| 227 | + "cell_type": "code", |
| 228 | + "execution_count": 25, |
| 229 | + "id": "0d14ac78", |
| 230 | + "metadata": {}, |
| 231 | + "outputs": [ |
| 232 | + { |
| 233 | + "name": "stdout", |
| 234 | + "output_type": "stream", |
| 235 | + "text": [ |
| 236 | + "input: 5\n", |
| 237 | + "expected output : 5.0\n", |
| 238 | + "prediction: 5.0\n", |
| 239 | + "input: 5 + 3\n", |
| 240 | + "expected output : 8.0\n", |
| 241 | + "prediction: 8.0\n", |
| 242 | + "input: 2^3.171\n", |
| 243 | + "expected output : 9.006708689094099\n", |
| 244 | + "prediction: 9.006708689094099\n", |
| 245 | + "input: 2 ^3.171 \n", |
| 246 | + "expected output : 9.006708689094099\n", |
| 247 | + "prediction: 9.006708689094099\n", |
| 248 | + "input: two to the power of three point one hundred seventy one\n", |
| 249 | + "expected output : 9.006708689094099\n", |
| 250 | + "prediction: 9.006708689094099\n", |
| 251 | + "input: five + three squared minus 1\n", |
| 252 | + "expected output : 13.0\n", |
| 253 | + "prediction: 13.0\n", |
| 254 | + "input: 2097 times 27.31\n", |
| 255 | + "expected output : 57269.07\n", |
| 256 | + "prediction: 57269.07\n", |
| 257 | + "input: two thousand ninety seven times twenty seven point thirty one\n", |
| 258 | + "expected output : 57269.07\n", |
| 259 | + "prediction: 57269.07\n", |
| 260 | + "input: 209758 / 2714\n", |
| 261 | + "expected output : 77.28739867354459\n", |
| 262 | + "prediction: 77.28739867354459\n", |
| 263 | + "input: 209758.857 divided by 2714.31\n", |
| 264 | + "expected output : 77.27888745205964\n", |
| 265 | + "prediction: 77.27888745205964\n" |
| 266 | + ] |
| 267 | + } |
| 268 | + ], |
| 269 | + "source": [ |
| 270 | + "for i, example in enumerate(dataset):\n", |
| 271 | + " print(\"input: \", example[\"question\"])\n", |
| 272 | + " print(\"expected output :\", example[\"answer\"])\n", |
| 273 | + " print(\"prediction: \", numeric_output[i])" |
| 274 | + ] |
| 275 | + }, |
| 276 | + { |
| 277 | + "cell_type": "code", |
| 278 | + "execution_count": null, |
| 279 | + "id": "b9021ffd", |
| 280 | + "metadata": {}, |
| 281 | + "outputs": [], |
| 282 | + "source": [] |
| 283 | + } |
| 284 | + ], |
| 285 | + "metadata": { |
| 286 | + "kernelspec": { |
| 287 | + "display_name": "Python 3 (ipykernel)", |
| 288 | + "language": "python", |
| 289 | + "name": "python3" |
| 290 | + }, |
| 291 | + "language_info": { |
| 292 | + "codemirror_mode": { |
| 293 | + "name": "ipython", |
| 294 | + "version": 3 |
| 295 | + }, |
| 296 | + "file_extension": ".py", |
| 297 | + "mimetype": "text/x-python", |
| 298 | + "name": "python", |
| 299 | + "nbconvert_exporter": "python", |
| 300 | + "pygments_lexer": "ipython3", |
| 301 | + "version": "3.9.1" |
| 302 | + } |
| 303 | + }, |
| 304 | + "nbformat": 4, |
| 305 | + "nbformat_minor": 5 |
| 306 | +} |
0 commit comments