forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SlidingWindowMaximum.cpp
113 lines (101 loc) · 3.22 KB
/
SlidingWindowMaximum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
// Source : https://leetcode.com/problems/sliding-window-maximum/
// Author : Hao Chen
// Date : 2015-07-19
/**********************************************************************************
*
* Given an array nums, there is a sliding window of size k which is moving from the
* very left of the array to the very right. You can only see the k numbers in the
* window. Each time the sliding window moves right by one position.
*
* For example,
* Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.
*
* Window position Max
* --------------- -----
* [1 3 -1] -3 5 3 6 7 3
* 1 [3 -1 -3] 5 3 6 7 3
* 1 3 [-1 -3 5] 3 6 7 5
* 1 3 -1 [-3 5 3] 6 7 5
* 1 3 -1 -3 [5 3 6] 7 6
* 1 3 -1 -3 5 [3 6 7] 7
*
* Therefore, return the max sliding window as [3,3,5,5,6,7].
*
* Note:
* You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty
* array.
*
* Follow up:
* Could you solve it in linear time?
*
* How about using a data structure such as deque (double-ended queue)?
* The queue size need not be the same as the window’s size.
* Remove redundant elements and the queue should store only elements that need to be
* considered.
*
**********************************************************************************/
#include <iostream>
#include <vector>
#include <deque>
#include <set>
using namespace std;
//O(nlog(k)
vector<int> maxSlidingWindow02(vector<int>& nums, int k) {
vector<int> result;
//using multiset for collecting the window data (O(nlog(k) time complexity)
multiset<int> w;
for(int i=0; i<nums.size(); i++) {
//remove the left item which leaves window
if (i >= k) {
w.erase(w.find(nums[i-k]));
}
//insert the right itme which enter the window
w.insert(nums[i]);
if (i>=k-1) {
result.push_back(*w.rbegin());
}
}
return result;
}
//O(n)
vector<int> maxSlidingWindow01(vector<int>& nums, int k) {
vector<int> result;
//using multiset for collecting the window data (O(nlog(k) time complexity)
deque<int> q;
for(int i=0; i<nums.size(); i++) {
//remove the left item which leaves window
if (!q.empty() && q.front() == i - k) {
q.pop_front();
}
//remove all num which less than current number from the back one by one
while (!q.empty() && nums[q.back()] < nums[i]) {
q.pop_back();
}
//insert the right itme which enter the window
q.push_back(i);
if (i>=k-1) {
result.push_back(nums[q.front()]);
}
}
return result;
}
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
return maxSlidingWindow01(nums, k);
return maxSlidingWindow02(nums, k);
}
void printVector( vector<int>& v ) {
cout << "{ ";
for(int i=0; i<v.size(); i++) {
cout << v[i] << (i==v.size() ? " ": ", ");
}
cout << "}" << endl;
}
int main(int argc, char** argv)
{
int a[] = {1,3,-1,-3,5,3,6,7};
int k = 3;
vector<int> nums(a, a+sizeof(a)/sizeof(a[0]));
printVector(nums);
vector<int> result = maxSlidingWindow(nums, k);
printVector(result);
}