forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CountingBits.cpp
67 lines (64 loc) · 2.44 KB
/
CountingBits.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
// Source : https://leetcode.com/problems/counting-bits/
// Author : Hao Chen
// Date : 2016-05-30
/***************************************************************************************
*
* Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤
* num calculate the number of 1's in their binary representation and return them as an
* array.
*
* Example:
* For num = 5 you should return [0,1,1,2,1,2].
*
* Follow up:
*
* It is very easy to come up with a solution with run time O(n*sizeof(integer)). But
* can you do it in linear time O(n) /possibly in a single pass?
* Space complexity should be O(n).
* Can you do it like a boss? Do it without using any builtin function like
* __builtin_popcount in c++ or in any other language.
*
* You should make use of what you have produced already.
* Divide the numbers in ranges like [2-3], [4-7], [8-15] and so on. And try to
* generate new range from previous.
* Or does the odd/even status of the number help you in calculating the number of 1s?
*
* Credits:Special thanks to @ syedee for adding this problem and creating all test
* cases.
***************************************************************************************/
class Solution {
public:
/*
* Initialization
*
* bits_cnt[0] => 0000 => 0
* bits_cnt[1] => 0001 => 1
*
* if the number has 2 bits (2, 3), then we can split the binary to two parts,
* 2 = 10 + 0 and 3= 10 + 1, then we can reuse the bits_cnt[0] and bits_cnt[1]
*
* bits_cnt[2] => 0010 => 0010 + 0 => 1 + bits_cnt[0];
* bits_cnt[3] => 0011 => 0010 + 1 => 1 + bits_cnt[1];
*
* if the number has 3 bits (4,5,6,7), then we can split the binary to two parts,
* 4 = 100 + 0, 5 = 100 + 01, 6= 100 + 10, 7 = 100 +11
* then we can reuse the bits_cnt[0] and bits_cnt[1]
*
* bits_cnt[4] => 0110 => 0100 + 00 => 1 + bits_cnt[0];
* bits_cnt[5] => 0101 => 0100 + 01 => 1 + bits_cnt[1];
* bits_cnt[6] => 0110 => 0100 + 10 => 1 + bits_cnt[2];
* bits_cnt[7] => 0111 => 0100 + 11 => 1 + bits_cnt[3];
*
* so, we can have the solution:
*
* bits_cnt[x] = bits_cnt[x & (x-1) ] + 1;
*
*/
vector<int> countBits(int num) {
vector<int> bits_cnt(num+1, 0);
for (int i=1; i<=num; i++) {
bits_cnt[i] = bits_cnt[i & (i-1)] + 1;
}
return bits_cnt;
}
};