\-o-O-0-O-o-/
Distributed deep learning framework based on pytorch/numba/nccl and zeromq.
| SCHD || WKR | WKR | WKR |
-----------------------------------
| Distributed DL Trainer |
===================================
| RPC Framework |
-----------------------------------
| ZeroMQ + NCCL |
-----------------------------------
| GPU | GPU | GPU | GPU | GPU |
There are two types of processes in necklace for now:
- the scheduler, manages the whole process of the training
- some workers, really do the training on hardware with a specific deep learning framework
They communicate with each other by two types of messages:
- the control messages are through a RPC mechanism based on ZeroMQ
- the training informations such as gradients and weights of model are through NCCL
- CUDA + NCCL
Please reference Nvidia documents.
- pynccl
The pynccl repo is here, or just use pip
pip install pynccl
- zerorpc
Necklace implements a RPC framework based on ZeroRPC called OneRPC.
TRN_MODE_L = [
'no'
'dp',
'pp',
'mp',
'zr',
'dp+pp',
'dp+mp',
'pp+mp', # x
'dp+pp+mp',
'dp+zr',
'zr+pp', # x
'zr+mp',
'zr+pp+mp', # x
'dp+zr+mp',
'dp+zr+pp', # x
'dp+zr+pp+mp', # x
]
All the examples are here.
Note that all the run commands are at the end of the files.
For one example, with trainer mode "dp+pp+mp": code
On a server, run scheduler
$ python train_mnist_pp_81_dpppmp_3.py -r scheduler -w 8 -k 0 -t "dp+pp+mp" -dpsz 2 -ppsz 2 -mpsz 2 --epochs 3 -u tcp://192.168.58.193:11001 -b 100
On some servers with some GPUs, run some workers
$ python train_mnist_pp_81_dpppmp_3.py -r worker -w 8 -k 0 -g 0 -t "dp+pp+mp" -dpsz 2 -ppsz 2 -mpsz 2 -u tcp://192.168.58.193:12000 -s tcp://192.168.58.193:11001 -b 100
$ python train_mnist_pp_81_dpppmp_3.py -r worker -w 8 -k 1 -g 1 -t "dp+pp+mp" -dpsz 2 -ppsz 2 -mpsz 2 -u tcp://192.168.58.193:12001 -s tcp://192.168.58.193:11001 -b 100
$ python train_mnist_pp_81_dpppmp_3.py -r worker -w 8 -k 2 -g 2 -t "dp+pp+mp" -dpsz 2 -ppsz 2 -mpsz 2 -u tcp://192.168.58.193:12002 -s tcp://192.168.58.193:11001 -b 100
$ python train_mnist_pp_81_dpppmp_3.py -r worker -w 8 -k 3 -g 0 -t "dp+pp+mp" -dpsz 2 -ppsz 2 -mpsz 2 -u tcp://192.168.58.192:12000 -s tcp://192.168.58.193:11001 -b 100
$ python train_mnist_pp_81_dpppmp_3.py -r worker -w 8 -k 4 -g 1 -t "dp+pp+mp" -dpsz 2 -ppsz 2 -mpsz 2 -u tcp://192.168.58.192:12001 -s tcp://192.168.58.193:11001 -b 100
$ python train_mnist_pp_81_dpppmp_3.py -r worker -w 8 -k 5 -g 2 -t "dp+pp+mp" -dpsz 2 -ppsz 2 -mpsz 2 -u tcp://192.168.58.192:12002 -s tcp://192.168.58.193:11001 -b 100
$ python train_mnist_pp_81_dpppmp_3.py -r worker -w 8 -k 6 -g 0 -t "dp+pp+mp" -dpsz 2 -ppsz 2 -mpsz 2 -u tcp://192.168.58.194:12000 -s tcp://192.168.58.193:11001 -b 100
$ python train_mnist_pp_81_dpppmp_3.py -r worker -w 8 -k 7 -g 1 -t "dp+pp+mp" -dpsz 2 -ppsz 2 -mpsz 2 -u tcp://192.168.58.194:12001 -s tcp://192.168.58.193:11001 -b 100
- DP (Data Parallelism)
- MP (Model Parallelism)
- PP (Pipeline Parallelism)
- ZeRO (ZeRO: Memory Optimizations Toward Training Trillion Parameter Models)