-
Notifications
You must be signed in to change notification settings - Fork 117
/
Copy pathmain.py
executable file
·138 lines (111 loc) · 4.03 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import io
import PIL
import duckdb
import lancedb
import lance
import pyarrow.compute as pc
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast
import gradio as gr
MODEL_ID = None
MODEL = None
TOKENIZER = None
PROCESSOR = None
def create_table(dataset):
db = lancedb.connect("~/datasets/demo")
if "diffusiondb" in db.table_names():
return db.open_table("diffusiondb")
data = lance.dataset(dataset).to_table()
tbl = db.create_table(
"diffusiondb", data.filter(~pc.field("prompt").is_null()), mode="overwrite"
)
tbl.create_fts_index(["prompt"])
return tbl
def setup_clip_model(model_id):
global MODEL_ID, MODEL, TOKENIZER, PROCESSOR
MODEL_ID = model_id
TOKENIZER = CLIPTokenizerFast.from_pretrained(MODEL_ID)
MODEL = CLIPModel.from_pretrained(MODEL_ID)
PROCESSOR = CLIPProcessor.from_pretrained(MODEL_ID)
def embed_func(query):
inputs = TOKENIZER([query], padding=True, return_tensors="pt")
text_features = MODEL.get_text_features(**inputs)
return text_features.detach().numpy()[0]
def find_image_vectors(query):
emb = embed_func(query)
code = (
"import lancedb\n"
"db = lancedb.connect('~/datasets/demo')\n"
"tbl = db.open_table('diffusiondb')\n\n"
f"embedding = embed_func('{query}')\n"
"tbl.search(embedding).limit(9).to_df()"
)
return (_extract(tbl.search(emb).limit(9).to_df()), code)
def find_image_keywords(query):
code = (
"import lancedb\n"
"db = lancedb.connect('~/datasets/demo')\n"
"tbl = db.open_table('diffusiondb')\n\n"
f"tbl.search('{query}').limit(9).to_df()"
)
return (_extract(tbl.search(query).limit(9).to_df()), code)
def find_image_sql(query):
code = (
"import lancedb\n"
"import duckdb\n"
"db = lancedb.connect('~/datasets/demo')\n"
"tbl = db.open_table('diffusiondb')\n\n"
"diffusiondb = tbl.to_lance()\n"
f"duckdb.sql('{query}').to_df()"
)
diffusiondb = tbl.to_lance()
return (_extract(duckdb.sql(query).to_df()), code)
def _extract(df):
image_col = "image"
return [
(PIL.Image.open(io.BytesIO(row[image_col])), row["prompt"])
for _, row in df.iterrows()
]
def _extract(df):
image_col = "image"
return [
(PIL.Image.open(io.BytesIO(row[image_col])), row["prompt"])
for _, row in df.iterrows()
]
def create_gradio_dash():
with gr.Blocks() as demo:
with gr.Row():
with gr.Tab("Embeddings"):
vector_query = gr.Textbox(
value="portraits of a person", show_label=False
)
b1 = gr.Button("Submit")
with gr.Tab("Keywords"):
keyword_query = gr.Textbox(value="ninja turtle", show_label=False)
b2 = gr.Button("Submit")
with gr.Tab("SQL"):
sql_query = gr.Textbox(
value="SELECT * from diffusiondb WHERE image_nsfw >= 2 LIMIT 9",
show_label=False,
)
b3 = gr.Button("Submit")
with gr.Row():
code = gr.Code(label="Code", language="python")
with gr.Row():
gallery = gr.Gallery(
label="Found images", show_label=False, elem_id="gallery"
).style(columns=[3], rows=[3], object_fit="contain", height="auto")
b1.click(find_image_vectors, inputs=vector_query, outputs=[gallery, code])
b2.click(find_image_keywords, inputs=keyword_query, outputs=[gallery, code])
b3.click(find_image_sql, inputs=sql_query, outputs=[gallery, code])
demo.launch()
def args_parse():
parser = argparse.ArgumentParser()
parser.add_argument("--model_id", type=str, default="openai/clip-vit-base-patch32")
parser.add_argument("--dataset", type=str, default="rawdata.lance")
return parser.parse_args()
if __name__ == "__main__":
args = args_parse()
setup_clip_model(args.model_id)
tbl = create_table(args.dataset)
create_gradio_dash()