- 🎯 In this
hands-on training notebook
, we'll see the most important features of thePandas
library used fordata science
/data analysis
and machine learning tasks inPython
. - 📫 Feel free to contact me if anything is wrong or if anything needs to be changed 😎! labrijisaad@gmail.com
- 🙌 Notebook made by @labriji_saad inspired by the work of ageron.
👣 Here are the steps we followed in this notebook :
1️⃣ Setup
2️⃣ Series objects
2️⃣1️⃣
Creating
a Series
2️⃣2️⃣
Series
are similar to a1D ndarray!
2️⃣3️⃣
Index labels
2️⃣4️⃣ Init from
dict
2️⃣5️⃣ Automatic
alignment
2️⃣6️⃣ Init with a
scalar
2️⃣7️⃣ Series
name
2️⃣8️⃣
Plotting
a Series
2️⃣9️⃣ Handling
time
2️⃣1️⃣0️⃣
Time range
2️⃣1️⃣1️⃣
Resampling
2️⃣1️⃣2️⃣
Upsampling
&interpolation
2️⃣1️⃣3️⃣
Timezones
2️⃣1️⃣4️⃣
Periods
3️⃣ DataFrame objects
3️⃣1️⃣
Creating
a Dataframe
3️⃣2️⃣
Multi-indexing
3️⃣3️⃣
Dropping
a level
3️⃣4️⃣
Transposing
3️⃣5️⃣
Stacking
&unstacking
levels
3️⃣6️⃣
Most methods return modified copies
3️⃣7️⃣
Accessing
rows
3️⃣8️⃣
Adding
&removing
columns
3️⃣9️⃣
Assigning
new columns
3️⃣1️⃣0️⃣
Evaluating an expression
3️⃣1️⃣1️⃣
Querying
a DataFrame
3️⃣1️⃣2️⃣
Sorting
a DataFrame
3️⃣1️⃣3️⃣
Plotting
a DataFrame
3️⃣1️⃣4️⃣
Operations
on DataFrames
3️⃣1️⃣5️⃣
Automatic alignment
3️⃣1️⃣6️⃣
Handling
missing data
3️⃣1️⃣7️⃣
Aggregating
with groupby
3️⃣1️⃣8️⃣
Pivot tables
3️⃣1️⃣9️⃣
Overview functions
3️⃣2️⃣0️⃣
Saving
&loading
3️⃣2️⃣0️⃣1️⃣
Saving
3️⃣2️⃣0️⃣2️⃣
Loading
3️⃣2️⃣1️⃣
Combining
DataFrames
3️⃣2️⃣2️⃣
Concatenation
3️⃣2️⃣3️⃣
Categories
4️⃣ What next
?