forked from analogdevicesinc/ai8x-training
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparsecmd.py
221 lines (208 loc) · 13.5 KB
/
parsecmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
###################################################################################################
#
# Copyright (C) Maxim Integrated Products, Inc. All Rights Reserved.
#
# Maxim Integrated Products, Inc. Default Copyright Notice:
# https://www.maximintegrated.com/en/aboutus/legal/copyrights.html
#
###################################################################################################
#
# Portions Copyright (c) 2018 Intel Corporation
#
# Copyright (c) 2018 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Command line parser for the Training/Quantization software.
"""
import argparse
# pylint: disable=wrong-import-order
import distiller
import distiller.quantization
from distiller.utils import float_range_argparse_checker as float_range
from examples.auto_compression.amc import amc_args as adc
from devices import device
SUMMARY_CHOICES = ['sparsity', 'compute', 'model', 'modules', 'png', 'png_w_params', 'onnx',
'onnx_simplified']
def get_parser(model_names, dataset_names):
"""
Return the argument parser
"""
parser = argparse.ArgumentParser(description='Image classification model')
parser.add_argument('--device', type=device, default=84,
help='set device (default: AI84)')
parser.add_argument('--8-bit-mode', '-8', dest='act_mode_8bit', action='store_true',
default=False,
help='simluate device operation (8-bit data)')
parser.add_argument('--arch', '-a', '--model', metavar='ARCH', required=True,
type=lambda s: s.lower(), dest='cnn',
choices=model_names,
help='model architecture: ' + ' | '.join(model_names))
parser.add_argument('--dataset', metavar='S', required=True,
choices=dataset_names,
help="dataset(s) (" + ', '.join(dataset_names) + ")")
parser.add_argument('--truncate-testset', action='store_true', default=False,
help='get only the first image from the test set')
parser.add_argument('--data', metavar='DIR', default='data', help='path to dataset')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', type=int, metavar='N',
help='number of total epochs to run (default: 90)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--kernel-stats', action='store_true', default=False,
help='compute kernel statistics')
parser.add_argument('--use-bias', action='store_true', default=False,
help='for models that support both bias and no bias, set the '
'`use bias` flag to true')
parser.add_argument('--avg-pool-rounding', action='store_true', default=False,
help='when simulating, use "round()" in AvgPool operations '
'(default: use "floor()")')
qat_args = parser.add_argument_group('Quantization Arguments')
qat_args.add_argument('--qat-policy', dest='qat_policy', default='qat_policy.yaml',
help='path to YAML file that defines the '
'QAT (quantization-aware training) policy')
optimizer_args = parser.add_argument_group('Optimizer Arguments')
optimizer_args.add_argument('--optimizer', default='SGD',
help='optimizer for training (default: SGD)')
optimizer_args.add_argument('--lr', '--learning-rate', default=0.1,
type=float, metavar='LR', help='initial learning rate')
optimizer_args.add_argument('--momentum', default=0.9, type=float,
metavar='M', help='momentum')
optimizer_args.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
load_checkpoint_group = parser.add_argument_group('Resuming Arguments')
load_checkpoint_group_exc = load_checkpoint_group.add_mutually_exclusive_group()
load_checkpoint_group_exc.add_argument('--resume-from', dest='resumed_checkpoint_path',
default='', type=str, metavar='PATH',
help='path to latest checkpoint. Use to resume paused '
'training session.')
load_checkpoint_group_exc.add_argument('--exp-load-weights-from', dest='load_model_path',
default='', type=str, metavar='PATH',
help='path to checkpoint to load weights from '
'(excluding other fields) (experimental)')
load_checkpoint_group.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
load_checkpoint_group.add_argument('--reset-optimizer', action='store_true',
help='Flag to override optimizer if resumed from '
'checkpoint. This will reset epochs count.')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on test set')
mgroup = parser.add_mutually_exclusive_group()
mgroup.add_argument('--save-csv', dest='csv_prefix', default=None, type=str,
help='save as CSVs with the given prefix during evaluation')
mgroup.add_argument('--save-sample', dest='generate_sample', type=int,
help='save the sample at given index as NumPy sample data')
parser.add_argument('--shap', default=0, type=int,
help='select # of images from the test set and plot SHAP after evaluation')
parser.add_argument('--activation-stats', '--act-stats', nargs='+', metavar='PHASE',
default=list(),
help='collect activation statistics on phases: train, valid, and/or test'
' (WARNING: this slows down training)')
parser.add_argument('--masks-sparsity', dest='masks_sparsity', action='store_true',
default=False,
help='print masks sparsity table at end of each epoch')
parser.add_argument('--param-hist', dest='log_params_histograms', action='store_true',
default=False,
help='log the parameter tensors histograms to file (WARNING: this can use '
'significant disk space)')
parser.add_argument('--summary', type=lambda s: s.lower(), choices=SUMMARY_CHOICES,
help='print a summary of the model, and exit - options: ' +
' | '.join(SUMMARY_CHOICES))
parser.add_argument('--summary-filename', default='model',
help='file name (w/o extension) for the model summary (default: "model"')
parser.add_argument('--compress', dest='compress', type=str, nargs='?', action='store',
help='configuration file for pruning the model '
'(default is to use hard-coded schedule)')
parser.add_argument('--sense', dest='sensitivity', choices=['element', 'filter', 'channel'],
type=lambda s: s.lower(),
help='test the sensitivity of layers to pruning')
parser.add_argument('--sense-range', dest='sensitivity_range', type=float, nargs=3,
default=[0.0, 0.95, 0.05],
help='an optional parameter for sensitivity testing providing the range '
'of sparsities to test.\n'
'This is equivalent to creating sensitivities = np.arange(start, '
'stop, step)')
parser.add_argument('--extras', default=None, type=str,
help='file with extra configuration information')
parser.add_argument('--deterministic', '--det', action='store_true',
help='Ensure deterministic execution for re-producible results.')
parser.add_argument('--seed', type=int, default=None,
help='seed the PRNG for CPU, CUDA, numpy, and Python')
parser.add_argument('--gpus', metavar='DEV_ID', default=None,
help='Comma-separated list of GPU device IDs to be used (default is to '
'use all available devices)')
parser.add_argument('--cpu', action='store_true', default=False,
help='Use CPU only. \n'
'Flag not set => uses GPUs according to the --gpus flag value.'
'Flag set => overrides the --gpus flag')
parser.add_argument('--name', '-n', metavar='NAME', default=None, help='Experiment name')
parser.add_argument('--out-dir', '-o', dest='output_dir', default='logs', help='Path to dump '
'logs and checkpoints')
parser.add_argument('--validation-split', '--valid-size', '--vs', dest='validation_split',
type=float_range(exc_max=True), default=0.1,
help='Portion of training dataset to set aside for validation')
parser.add_argument('--effective-train-size', '--etrs', type=float_range(exc_min=True),
default=1.,
help='Portion of training dataset to be used in each epoch. '
'NOTE: If --validation-split is set, then the value of this argument '
'is applied AFTER the train-validation split according to that '
'argument')
parser.add_argument('--effective-valid-size', '--evs', type=float_range(exc_min=True),
default=1.,
help='Portion of validation dataset to be used in each epoch. '
'NOTE: If --validation-split is set, then the value of this argument '
'is applied AFTER the train-validation split according to that '
'argument')
parser.add_argument('--effective-test-size', '--etes', type=float_range(exc_min=True),
default=1.,
help='Portion of test dataset to be used in each epoch')
parser.add_argument('--confusion', dest='display_confusion', default=False,
action='store_true',
help='Display the confusion matrix')
parser.add_argument('--embedding', dest='display_embedding', default=False,
action='store_true',
help='Display embedding (using projector)')
parser.add_argument('--pr-curves', dest='display_prcurves', default=False,
action='store_true',
help='Display the precision-recall curves')
parser.add_argument('--no-tensorboard', dest='tblog', default=True,
action='store_false',
help='Disable TensorBoard')
parser.add_argument('--regression', dest='regression', default=False,
action='store_true',
help='Force regression output')
parser.add_argument('--earlyexit_lossweights', type=float, nargs='*',
dest='earlyexit_lossweights', default=None,
help='List of loss weights for early exits '
'(e.g. --earlyexit_lossweights 0.1 0.3)')
parser.add_argument('--earlyexit_thresholds', type=float, nargs='*',
dest='earlyexit_thresholds', default=None,
help='List of EarlyExit thresholds (e.g. --earlyexit_thresholds 1.2 0.9)')
parser.add_argument('--num-best-scores', dest='num_best_scores', default=1, type=int,
help='number of best scores to track and report (default: 1)')
parser.add_argument('--load-serialized', dest='load_serialized', action='store_true',
default=False,
help='Load a model without DataParallel wrapping it')
parser.add_argument('--thinnify', dest='thinnify', action='store_true', default=False,
help='physically remove zero-filters and create a smaller model')
parser.add_argument('--sparsity-perf', action='store_true', default=False,
help='when determining best epoch, use sparsity as primary key')
distiller.knowledge_distillation.add_distillation_args(parser, model_names, True)
distiller.quantization.add_post_train_quant_args(parser)
distiller.pruning.greedy_filter_pruning.add_greedy_pruner_args(parser)
adc.add_automl_args(parser)
return parser