Skip to content

kyuhwas/gap_sdk

 
 

Repository files navigation

GreenWaves Technologies

Setting up the GAP8 SDK

About

The GAP8 SDK allows you to compile and execute applications on the GAP8 IoT Application Processor. This SDK is an extract of the necessary elements from the pulp-sdk (https://github.com/pulp-platform/pulp-sdk) produced by the PULP project, to provide a development environment for the GAP8 series processors.

We provide you with all the necessary tools and two different operating systems for GAP8:

  • Tools

    • GAP8 RISCV GNU toolchain: a pre-compiled toolchain inherited from RISC V project with support for our extensions to the RISC-V Instruction Set Architecture.
    • PLPBRIDGE: a tool from the PULP project which allows communication between your PC and a GAP8 processor. Using this tool you can:
      • Program / control GAP8
      • Debug your application using GDB
      • Program the GAPuino flash memory with applications
  • Operating Systems

    • PULP OS - The open source embedded RTOS produced by the PULP project
    • Arm® Mbed™ OS - Arm Mbed OS is an open source embedded operating system. GreenWaves Technologies has ported it to GAP8 and VEGA.
    • FreeRTOS - FreeRTOS is an open source real time operating system. GreenWaves Technologies has ported it to GAP8
    • PMSIS - PMSIS is an open-source system layer which any operating system can implement to provide a common API to applications. We currently provide it fro PULP OS and FreeRTOS, and it is used by our applications to be portable.

Getting started with the GAP SDK

Ubuntu 18.04

These instructions were developed using a fresh Ubuntu 18.04 Bionic Beaver 64-Bit virtual machine from https://www.osboxes.org/ubuntu/#ubuntu-1804-info

The following packages needed to be installed:

sudo apt-get install -y build-essential git libftdi-dev libftdi1 doxygen python3-pip libsdl2-dev curl cmake libusb-1.0-0-dev scons gtkwave libsndfile1-dev rsync autoconf automake texinfo libtool pkg-config libsdl2-ttf-dev

The precompiled toolchain should be clone by using git lfs, this should be installed by using the following command:

curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
sudo apt-get install git-lfs
git lfs install

Configure USB Port for GAPuino Evaluation Board and Gapoc board

For the USB serial connection our GAPuino and Gapoc boards use an FDDI 2 port serial to USB controller. This needs to be set up (the driver is installed in the apt-get install step above).

Add your username to the dialout group:

sudo usermod -a -G dialout <username>

Logout from your session and login again. Now create a udev rule for gapuino ftdi2232 usb chip

touch 90-ftdi_gapuino.rules
echo 'ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6010", MODE="0666", GROUP="dialout"'> 90-ftdi_gapuino.rules
echo 'ATTRS{idVendor}=="15ba", ATTRS{idProduct}=="002b", MODE="0666", GROUP="dialout"'>> 90-ftdi_gapuino.rules
sudo mv 90-ftdi_gapuino.rules /etc/udev/rules.d/
sudo udevadm control --reload-rules && sudo udevadm trigger

If you are using a Virtual Machine make sure that you give control of the FTDI device to your virtual machine. Plug the GAPuino into your USB port and then allow the virtual machine to access it. For example, for VirtualBox go to Devices->USB and select the device.

Please also make sure that your Virtual Machine USB emulation matches your PC USB version. A mismatch causes the USB interface to be very slow.

The following instructions assume that you install the GAP SDK into your home directory. If you want to put it somewhere else then please modify them accordingly.

Ubuntu 16.04

You can follow the steps for Ubuntu 18.04 except for the following instructions.

After you have installed the system packages with apt-get, you need to also create this symbolic link:

sudo ln -s /usr/bin/libftdi-config /usr/bin/libftdi1-config

Download and install the toolchain:

Now clone the GAP8 SDK and the GAP8/RISC-V toolchain:

git clone https://github.com/GreenWaves-Technologies/gap_sdk.git
git clone https://github.com/GreenWaves-Technologies/gap_riscv_toolchain_ubuntu_18.git

In case you use an old git version, you may need to use these commands instead:

git clone https://github.com/GreenWaves-Technologies/gap_sdk.git
git lfs clone https://github.com/GreenWaves-Technologies/gap_riscv_toolchain_ubuntu_18.git

Install the toolchain (this may require to launch the script through sudo):

cd ~/gap_riscv_toolchain_ubuntu_18
./install.sh

Initialize and download all the sub projects of the SDK:

cd ~/gap_sdk
git submodule update --init --recursive

Install Python requirements

Our modules requires a few additional Python packages that you can install with this command from Gap SDK root folder:

pip3 install -r requirements.txt

In order to use the Gap tools for neural networks (nntool), we strongly encourage to install the Anaconda distribution ( Python3 ). You can find more information here: https://www.anaconda.com/.

Note that this is needed only if you want to use nntool, you can skip this steap otherwise. Once Anaconda is installed, you need to activate it and install python modules for this tool with this command:

pip install -r tools/nntool/requirements.txt
pip install -r requirements.txt

Configure the SDK:

You can either source sourceme.sh in the root sdk folder and then select the right board from the list, or directly source the board config.

If you directly source the board config, you need to source the appropriate config file for the board that you have. The SDK supports 2 boards (gapuino and gapoc) and each of them can use version 1 or version 2 of the GAP8 chip. Boards bought before 10/2019 contains GAP8 version 1 and use a USB B plug for JTAG while the ones bought after contains version 2 and use a USB micro B for JTAG.

Hereafter you can find a summary of the available boards and their configuration file.

Board Chip Config file
Gapuino GAP8 v1 configs/gapuino.sh
Gapuino GAP8 v2 configs/gapuino_v2.sh
Gapoc GAP8 v1 configs/gapoc_a.sh
Gapoc GAP8 v2 configs/gapoc_a_v2.sh

Once the proper config file is sourced, you can proceed with the SDK build.

Note that after the SDK has been built, you can source another board config file to change the board configuration, in case you want to use a different board. In this case the SDK will have to be built again. As soon as the SDK has been built once for a board configuration, it does not need to be built again for this configuration, unless the SDK is cleaned.

OpenOCD

OpenOCD for Gap8 is now used instead of plpbridge. There are a few applications which require OpenOCD, as they are using OpenOCD semi-hosting to transfer files with the workstation.

You have to install the system dependencies required by OpenOCD that you can find here: http://openocd.org/doc-release/README

There are different cables setup by default for each board. In case you want to use a different cable, you can define this environment variable:

export GAPY_OPENOCD_CABLE=interface/ftdi/olimex-arm-usb-ocd-h.cfg

Build the SDK:

You can build the SDK with this command:

make all

GVSOC virtual platform will be installed during the previous build.

Getting the Autotiler

The autotiler code generation library needs to be downloaded by this following commands:

cd ~/gap_sdk/
make autotiler

During the download, you will be asked several simple questions and then you will receive an email with an URL. Please copy the url in the mail to the last question, then the download and installation would be started automatically. If you have already answered these questions, this enquiry will be skipped.

For offering you the best support, please answer the questions.

Getting nntool

You first need to install Anaconda and Python dependencies (see above).

Then execute:

cd ~/gap_sdk/
make nntool

Compiling, running and debugging programs

The following command configures the shell environment correctly for the GAP8 SDK. It must be done for each terminal session:

source ~/gap_sdk/configs/gapuino.sh

The configuration file you should sourced may be different, depending on the board you are using (see above).

Tip: You can add an "alias" command as following in your .bashrc file:

alias GAP_SDK='cd ~/gap_sdk && source sourceme.sh'

Typing GAP_SDK will now change to the gap_sdk directory and execute the source command.

Finally try a test project. First connect your GAPuino to your PCs USB port and then type:

cd ~/gap_sdk/examples/pmsis/helloworld
make clean all run

After the build you should see:

     *** PMSIS HelloWorld ***

     Entering main controller
     [32 0] Hello World!
     Cluster master core entry
     [0 7] Hello World!
     [0 0] Hello World!
     [0 4] Hello World!
     [0 5] Hello World!
     [0 3] Hello World!
     [0 1] Hello World!
     [0 2] Hello World!
     [0 6] Hello World!
     Cluster master core exit
     Test success !
     Detected end of application, exiting with status: 0
     Loop exited
     commands completed

Debugging Programs

The JTAG bridge allows for printf's in your code to generate messages on your PC. GAP8 also has support for gdb server over JTAG for both pulp-os and mbed-os programs.

To enable gdbserver run mode execute the make target gdbserver:

make clean all gdbserver

The program will load and gdbserver will be started. Connect to the target with gdb from another shell (remember to source the sourceme.sh file in the root of the SDK in your new shell). Change directory to the directory containing your test program and then:

riscv32-unknown-elf-gdb BUILD/GAP8/GCC_RISCV/test

Once gdb has loaded connect to the gdbserver on the target.

(gdb) target remote localhost:1234
Remote debugging using localhost:1234

Using the virtual platform

You can also run this example on the Gap virtual platform with this command:

make clean all run platform=gvsoc

You can also generate VCD traces to see more details about the execution:

make clean all run platform=gvsoc runner_args=--vcd

You should see a message from the platform telling how to open the profiler.

Using the flasher (Hyperflash)

As soon as at least one file for a file-system is specified, the command "make all" will also build a flash image containing the file systems and upload it to the flash.

For example, you can include files for the readfs file-system with these flags in your Makefile:

READFS_FILES += <file1> <file2> <file3> ......

In case you don't have any file but you still want to upload the flash image, for example for booting from flash, you can execute after you compiled your application:

make flash

In case you specified files, the command "make all" will not only build the application but also build the flash image and upload it to the flash. In case you just want to build your application, you can do:

make build

Then after that if you want to produce the flash image and upload it, you can do:

make image flash

Boot from flash

The board is by default configured to boot through JTAG. If you want to boot from flash, you need to first program a few efuses to tell the ROM to boot from flash. Be careful that this is a permanent operation, even though it will still be possible to boot from JTAG. This will just always boot from flash when you power-up the board or reset it. To program the efuses, execute the following command and follow the instructions:

openocd-fuser-hyperflash

If you choose to boot your application from HyperFlash, and you want to view the output of printf's in your code then you can first compile your application with the printf redirected on the UART with this command:

make clean all run io=uart

You can also use a terminal program, like "cutecom":

sudo apt-get install -y cutecom
cutecom&

Then please configure your terminal program to use /dev/ttyUSB1 with a 115200 baud rate, 8 data bits and 1 stop bit.

Documentation

Build the documentation:

cd gap_sdk
make docs

If you haven't download and install the autotiler, you will probably have some warnings when you build the docs. All the documentations are available on our website: https://greenwaves-technologies.com/en/sdk/

You can read the documentation by opening gap_doc.html in the docs folder in your browser:

firefox docs/gap_doc.html

If you would like PDF versions of the reference manuals you can do:

cd docs
make pdf

Upgrading/Downgrading the SDK

If you want to upgrade/downgrade your SDK to a new/old version:

cd gap_sdk
git checkout master && git pull
git checkout <release tag name>
git submodule sync --recursive
git submodule update --init --recursive
make clean sdk

Please check our release tags here to ensure the version: https://github.com/GreenWaves-Technologies/gap_sdk/releases

Getting help

Please log any issues you have with the SDK in the github project.

We have also created a GAP8 developers’ forum for you to ask questions and find out more about the GAP8 SDK. You can join this group at https://greenwaves-technologies.com/gap8_developers_forum/

Trademarks

Arm® Mbed™ OS are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Packages

No packages published

Languages

  • C 71.6%
  • C++ 19.2%
  • Python 4.0%
  • Objective-C 2.8%
  • Assembly 0.6%
  • HTML 0.6%
  • Other 1.2%