This repository has been archived by the owner on May 3, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
asresults_reinforce.R
143 lines (126 loc) · 6.67 KB
/
asresults_reinforce.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
library(tidyr)
library(magrittr)
library(dplyr)
library(ggplot2)
library(ggthemes)
library(grid)
library(scales)
library(aslib)
library(llama)
library(randomForest)
library(parallelMap)
source('reinforce.R')
dataset_hard <- ExtractHardInstancesGRAPHS2015()
# Model Training
if (!file.exists("model_regr_hard.rds")) {
parallelStartSocket(4)
parallelLibrary("llama", "mlr")
start_time <- Sys.time()
system.time(model_regr_hard <- regressionPairs(makeLearner("regr.randomForest"), dataset_hard))
end_time <- Sys.time()
saveRDS(model_regr_hard, "model_regr_hard.rds")
cat("Training started at", format(start_time, "%X"), "and ended at", format(end_time, "%X"), "\n")
end_time - start_time
} else {
model_regr_hard <- readRDS("model_regr_hard.rds")
cat("Loaded model_regr_hard from disk.\n")
}
if (!file.exists("model_reinforce.rds")) {
start_time <- Sys.time()
system.time(model_reinforce <- REINFORCE_AS(dataset_hard, EPOCHS = 30, NUM_BATCHES = 64, DROPOUT_PROB = 0.5, TB_ROOTFOLDER = paste(getwd(), "test_asresults"), OUTFILE = "test_reinforce.txt"))
end_time <- Sys.time()
saveRDS(model_reinforce, "model_reinforce.rds")
cat("Training started at", format(start_time, "%X"), "and ended at", format(end_time, "%X"), "\n")
end_time - start_time
} else {
model_reinforce <- readRDS("model_reinforce.rds")
cat("Loaded model_reinforce from disk.\n")
}
# Algorithm selection results
resvbs <- data.frame(model = "Virtual best solver",
mean.misclassification.penalty = mean(misclassificationPenalties(dataset_hard, vbs)),
solved = sum(successes(dataset_hard, vbs)),
mean.performance = mean(parscores(dataset_hard, vbs, factor = 1)),
median.performance = median(parscores(dataset_hard, vbs, factor = 1)))
ressb <- data.frame(model = "Single best solver",
mean.misclassification.penalty = mean(misclassificationPenalties(dataset_hard, singleBest)),
solved = sum(successes(dataset_hard, singleBest)),
mean.performance = mean(parscores(dataset_hard, singleBest, factor = 1)),
median.performance = median(parscores(dataset_hard, singleBest, factor = 1)))
resrp <- data.frame(model = "Pairwise random forest regression",
mean.misclassification.penalty = mean(misclassificationPenalties(dataset_hard, model_regr_hard)),
solved = sum(successes(dataset_hard, model_regr_hard)),
mean.performance = mean(parscores(dataset_hard, model_regr_hard, factor = 1)),
median.performance = median(parscores(dataset_hard, model_regr_hard, factor = 1)))
resrl <- data.frame(model = "REINFORCE",
mean.misclassification.penalty = mean(misclassificationPenalties(dataset_hard, model_reinforce)),
solved = sum(successes(dataset_hard, model_reinforce)),
mean.performance = mean(parscores(dataset_hard, model_reinforce, factor = 1)),
median.performance = median(parscores(dataset_hard, model_reinforce, factor = 1)))
results <- rbind(resvbs, resrp, ressb, resrl)
# CDF plot, using original runtime values
runtimes <- data.frame(PRFR = parscores(dataset_hard, model_regr_hard, factor = 1),
REINFORCE = parscores(dataset_hard, model_reinforce, factor = 1),
VBS = parscores(dataset_hard, vbs, factor = 1),
SBS = parscores(dataset_hard, singleBest, factor = 1))
runtimes_long <- gather(runtimes, model, time, PRFR:SBS)
cdfplot = ggplot(runtimes_long, aes(x = time, col = model)) +
stat_ecdf() +
scale_linetype_manual(values=c(3,1), guide = FALSE) +
scale_x_log10(breaks = trans_breaks("log10", function(x) 10^x, n = 10),
labels = trans_format("log10", math_format(10^.x)),
limits = c(1, (1e8)-1)) +
coord_cartesian(xlim = c(1, (1e8)-1),
ylim = c(0,1)) +
ylab("fraction of instances solved") + xlab("runtime [ms]") +
annotation_logticks(sides = "b") +
theme_tufte(base_family='Times', base_size = 14) +
guides(col = guide_legend(ncol = 2, keyheight = .8)) +
theme(legend.justification=c(1,0), legend.position=c(1,0.7), aspect.ratio = 0.6, axis.line = element_line(colour="black"), panel.grid = element_line(), panel.grid.major = element_line(colour="lightgray"))
cdfplot_zoom = ggplot(runtimes_long, aes(x = time, col = model)) +
stat_ecdf() +
scale_linetype_manual(values=c(3,1), guide = FALSE) +
scale_x_log10(breaks = trans_breaks("log10", function(x) 10^x, n = 3),
labels = trans_format("log10", math_format(10^.x)),
limits = c(1, (1e8)-1)) +
coord_cartesian(xlim = c(1e7, (1e8)-1),
ylim = c(.963,1)) +
annotation_logticks(sides = "b") +
theme_tufte(base_family='Times', base_size = 14) +
theme(legend.position="none",
axis.title.x=element_blank(), axis.title.y=element_blank(),
panel.background = element_rect(fill='white', colour = "white"),
axis.line = element_line(colour="black"),
panel.grid = element_line(),
panel.grid.major = element_line(colour="lightgray"))
vp = viewport(width = 0.57, height = 0.41, x = 0.71, y = 0.41)
print(cdfplot)
print(cdfplot_zoom, vp = vp)
summary(runtimes)
# CDF plot, using log-scaled runtime values
runtimes_logscaled <- runtimes_long %>%
mutate(time = replace(time, time == 0, 1)) %>%
mutate(time = log10(time))
cdfplot_log <- ggplot(runtimes_logscaled, aes(x = time, col = model)) +
stat_ecdf() +
ylab("fraction of instances solved") + xlab("log(runtime)") +
theme_tufte(base_family='Times', base_size = 14) +
guides(col = guide_legend(ncol = 2, keyheight = .8)) +
theme(legend.justification=c(1,0), legend.position=c(1,0.6), aspect.ratio = 0.6, axis.line = element_line(colour="black"), panel.grid = element_line(), panel.grid.major = element_line(colour="lightgray"))
cdfplot_log_zoom <- ggplot(runtimes_logscaled, aes(x = time, col = model)) +
stat_ecdf() +
coord_cartesian(xlim = c(4, 8), ylim = c(.75,1)) +
theme_tufte(base_family='Times', base_size = 14) +
theme(legend.position="none",
axis.title.x=element_blank(), axis.title.y=element_blank(),
panel.background = element_rect(fill='white', colour = "white"),
axis.line = element_line(colour="black"),
panel.grid = element_line(),
panel.grid.major = element_line(colour="lightgray"))
vp = viewport(width = 0.55, height = 0.41, x = 0.72, y = 0.39)
print(cdfplot_log)
print(cdfplot_log_zoom, vp = vp)
runtimes_logscaled_wide <- runtimes_logscaled %>%
mutate(ID = rep(c(1:2336),4)) %>%
spread(model, time)
summary(runtimes_logscaled_wide[,2:5])