Skip to content

Latest commit

 

History

History
489 lines (350 loc) · 17.6 KB

动态规划-股票问题总结篇.md

File metadata and controls

489 lines (350 loc) · 17.6 KB

欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

之前我们已经把力扣上股票系列的题目都讲过的,但没有来一篇股票总结,来帮大家高屋建瓴,所以总结篇这就来了!

股票问题总结

卖股票的最佳时机

动态规划:121.买卖股票的最佳时机股票只能买卖一次,问最大利润

【贪心解法】

取最左最小值,取最右最大值,那么得到的差值就是最大利润,代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int low = INT_MAX;
        int result = 0;
        for (int i = 0; i < prices.size(); i++) {
            low = min(low, prices[i]);  // 取最左最小价格
            result = max(result, prices[i] - low); // 直接取最大区间利润
        }
        return result;
    }
};

【动态规划】

  • dp[i][0] 表示第i天持有股票所得现金。
  • dp[i][1] 表示第i天不持有股票所得现金。

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i] 所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票佳价格卖出后所得现金即:prices[i] + dp[i - 1][0] 所以dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

代码如下:

// 版本一
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        if (len == 0) return 0;
        vector<vector<int>> dp(len, vector<int>(2));
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], -prices[i]);
            dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
        }
        return dp[len - 1][1];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

使用滚动数组,代码如下:

// 版本二
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);
            dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);
        }
        return dp[(len - 1) % 2][1];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

买卖股票的最佳时机II

动态规划:122.买卖股票的最佳时机II可以多次买卖股票,问最大收益。

【贪心解法】

收集每天的正利润便可,代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int result = 0;
        for (int i = 1; i < prices.size(); i++) {
            result += max(prices[i] - prices[i - 1], 0);
        }
        return result;
    }
};
  • 时间复杂度O(n)
  • 空间复杂度O(1)

【动态规划】

dp数组定义:

  • dp[i][0] 表示第i天持有股票所得现金
  • dp[i][1] 表示第i天不持有股票所得最多现金

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]

注意这里和121. 买卖股票的最佳时机唯一不同的地方,就是推导dp[i][0]的时候,第i天买入股票的情况

121. 买卖股票的最佳时机中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。

而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。

代码如下:(注意代码中的注释,标记了和121.买卖股票的最佳时机唯一不同的地方)

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        vector<vector<int>> dp(len, vector<int>(2, 0));
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        }
        return dp[len - 1][1];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

买卖股票的最佳时机III

动态规划:123.买卖股票的最佳时机III最多买卖两次,问最大收益。

【动态规划】

一天一共就有五个状态, 0. 没有操作

  1. 第一次买入
  2. 第一次卖出
  3. 第二次买入
  4. 第二次卖出

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]); dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

代码如下:

// 版本一
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
        dp[0][1] = -prices[0];
        dp[0][3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[i][0] = dp[i - 1][0];
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }
        return dp[prices.size() - 1][4];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n * 5)

当然,大家可以看到力扣官方题解里的一种优化空间写法,我这里给出对应的C++版本:

// 版本二
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<int> dp(5, 0);
        dp[1] = -prices[0];
        dp[3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[1] = max(dp[1], dp[0] - prices[i]);
            dp[2] = max(dp[2], dp[1] + prices[i]);
            dp[3] = max(dp[3], dp[2] - prices[i]);
            dp[4] = max(dp[4], dp[3] + prices[i]);
        }
        return dp[4];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

这种写法看上去简单,其实思路很绕,不建议大家这么写,这么思考,很容易把自己绕进去! 对于本题,把版本一的写法研究明白,足以!

买卖股票的最佳时机IV

动态规划:188.买卖股票的最佳时机IV 最多买卖k笔交易,问最大收益。

使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

j的状态表示为:

  • 0 表示不操作
  • 1 第一次买入
  • 2 第一次卖出
  • 3 第二次买入
  • 4 第二次卖出
  • .....

除了0以外,偶数就是卖出,奇数就是买入

  1. 确定递推公式

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][0]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

dp[i][2] = max(dp[i - 1][i] + prices[i], dp[i][2])

同理可以类比剩下的状态,代码如下:

for (int j = 0; j < 2 * k - 1; j += 2) {
    dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
    dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}

整体代码如下:

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {

        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
        for (int j = 1; j < 2 * k; j += 2) {
            dp[0][j] = -prices[0];
        }
        for (int i = 1;i < prices.size(); i++) {
            for (int j = 0; j < 2 * k - 1; j += 2) {
                dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
            }
        }
        return dp[prices.size() - 1][2 * k];
    }
};

当然有的解法是定义一个三维数组dp[i][j][k],第i天,第j次买卖,k表示买还是卖的状态,从定义上来讲是比较直观。但感觉三维数组操作起来有些麻烦,直接用二维数组来模拟三位数组的情况,代码看起来也清爽一些。

最佳买卖股票时机含冷冻期

动态规划:309.最佳买卖股票时机含冷冻期 可以多次买卖但每次卖出有冷冻期1天。

相对于动态规划:122.买卖股票的最佳时机II,本题加上了一个冷冻期。

动态规划:122.买卖股票的最佳时机II 中有两个状态,持有股票后的最多现金,和不持有股票的最多现金。本题则可以花费为四个状态

dp[i][j]:第i天状态为j,所剩的最多现金为dp[i][j]。

具体可以区分出如下四个状态:

  • 状态一:买入股票状态(今天买入股票,或者是之前就买入了股票然后没有操作)
  • 卖出股票状态,这里就有两种卖出股票状态
    • 状态二:两天前就卖出了股票,度过了冷冻期,一直没操作,今天保持卖出股票状态
    • 状态三:今天卖出了股票
  • 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!

达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:

  • 操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
  • 操作二:今天买入了,有两种情况
    • 前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
    • 前一天是保持卖出股票状态(状态二),dp[i - 1][1] - prices[i]

所以操作二取最大值,即:max(dp[i - 1][3], dp[i - 1][1]) - prices[i]

那么dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);

达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:

  • 操作一:前一天就是状态二
  • 操作二:前一天是冷冻期(状态四)

dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);

达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:

  • 操作一:昨天一定是买入股票状态(状态一),今天卖出

即:dp[i][2] = dp[i - 1][0] + prices[i];

达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:

  • 操作一:昨天卖出了股票(状态三)

p[i][3] = dp[i - 1][2];

综上分析,递推代码如下:

dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3]- prices[i], dp[i - 1][1]) - prices[i];
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];

整体代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        if (n == 0) return 0;
        vector<vector<int>> dp(n, vector<int>(4, 0));
        dp[0][0] -= prices[0]; // 持股票
        for (int i = 1; i < n; i++) {
            dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
            dp[i][2] = dp[i - 1][0] + prices[i];
            dp[i][3] = dp[i - 1][2];
        }
        return max(dp[n - 1][3],max(dp[n - 1][1], dp[n - 1][2]));
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

买卖股票的最佳时机含手续费

动态规划:714.买卖股票的最佳时机含手续费 可以多次买卖,但每次有手续费。

相对于动态规划:122.买卖股票的最佳时机II,本题只需要在计算卖出操作的时候减去手续费就可以了,代码几乎是一样的。

唯一差别在于递推公式部分,所以本篇也就不按照动规五部曲详细讲解了,主要讲解一下递推公式部分。

这里重申一下dp数组的含义:

dp[i][0] 表示第i天持有股票所省最多现金。 dp[i][1] 表示第i天不持有股票所得最多现金

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]

所以:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金,注意这里需要有手续费了即:dp[i - 1][0] + prices[i] - fee

所以:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);

本题和动态规划:122.买卖股票的最佳时机II的区别就是这里需要多一个减去手续费的操作

以上分析完毕,代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(2, 0));
        dp[0][0] -= prices[0]; // 持股票
        for (int i = 1; i < n; i++) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
        }
        return max(dp[n - 1][0], dp[n - 1][1]);
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

总结

至此,股票系列正式剧终,全部讲解完毕!

从买买一次到买卖多次,从最多买卖两次到最多买卖k次,从冷冻期再到手续费,最后再来一个股票大总结,可以说对股票系列完美收官了。

「代码随想录」值得推荐给身边每一位学习算法的朋友同学们,关注后都会发现相见恨晚!

其他语言版本

Java:

Python:

Go: