-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
test_load_all_components.sh
executable file
·49 lines (43 loc) · 1.97 KB
/
test_load_all_components.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#!/bin/bash -e
#
# Copyright 2019 The Kubeflow Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script automated the process to release the component images.
# To run it, find a good release candidate commit SHA from ml-pipeline-staging project,
# and provide a full github COMMIT SHA to the script. E.g.
# ./release.sh 2118baf752d3d30a8e43141165e13573b20d85b8
# The script copies the images from staging to prod, and update the local code.
# You can then send a PR using your local branch.
cd "$(dirname "$0")"
PYTHONPATH="$PYTHONPATH:../sdk/python"
echo "Testing loading all components"
find . -name component.yaml | python3 -c '
import sys
import kfp
# These components use v1 graph syntax which is not supported in v2 yet.
SKIP_COMPONENT_FILES = [
"./contrib/XGBoost/Cross_validation_for_regression/from_CSV/component.yaml",
"./contrib/XGBoost/Train_regression_and_calculate_metrics/from_CSV/component.yaml",
"./contrib/XGBoost/Train_and_cross-validate_regression/from_CSV/component.yaml",
# TODO: This component uses invalid placeholders. Updated when migrating GCPC to v2.
"./google-cloud/google_cloud_pipeline_components/aiplatform/batch_predict_job/component.yaml",
"./google-cloud/google_cloud_pipeline_components/v1/batch_predict_job/component.yaml"
]
for component_file in sys.stdin:
component_file = component_file.rstrip("\n")
print(component_file)
if component_file in SKIP_COMPONENT_FILES:
continue
kfp.components.load_component_from_file(component_file)
'