-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
analyze.py
62 lines (51 loc) · 2.26 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Usage:
# python analyze.py \
# --project bradley-playground \
# --region us-central1 \
# --cluster ten4 \
# --output gs://bradley-playground/analysis \
# --train gs://bradley-playground/sfpd/train.csv \
# --schema gs://bradley-playground/schema.json \
import argparse
import os
from common import _utils
def main(argv=None):
parser = argparse.ArgumentParser(description='ML Analyzer')
parser.add_argument('--project', type=str, help='Google Cloud project ID to use.')
parser.add_argument('--region', type=str, help='Which zone to run the analyzer.')
parser.add_argument('--cluster', type=str, help='The name of the cluster to run job.')
parser.add_argument('--output', type=str, help='GCS path to use for output.')
parser.add_argument('--train', type=str, help='GCS path of the training csv file.')
parser.add_argument('--schema', type=str, help='GCS path of the json schema file.')
args = parser.parse_args()
code_path = os.path.dirname(os.path.realpath(__file__))
runfile_source = os.path.join(code_path, 'analyze_run.py')
dest_files = _utils.copy_resources_to_gcs([runfile_source], args.output)
try:
api = _utils.get_client()
print('Submitting job...')
spark_args = ['--output', args.output, '--train', args.train, '--schema', args.schema]
job_id = _utils.submit_pyspark_job(
api, args.project, args.region, args.cluster, dest_files[0], spark_args)
print('Job request submitted. Waiting for completion...')
_utils.wait_for_job(api, args.project, args.region, job_id)
with open('/output.txt', 'w') as f:
f.write(args.output)
print('Job completed.')
finally:
_utils.remove_resources_from_gcs(dest_files)
if __name__== "__main__":
main()