-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgeneration_utils.py
451 lines (391 loc) · 20 KB
/
generation_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
from typing import Iterable, Optional
from nltk.translate.bleu_score import sentence_bleu
import src.model_utils
from src.metrics import tqdm
import torch
from torch.nn import functional as F
from transformers.file_utils import ModelOutput
from transformers.utils import logging
import src.utils as utils
from src.transformers_utils import postprocess_next_token_scores
logger = logging.get_logger(__name__)
@torch.no_grad()
def generate_text_from_recalibrated_model(
model,
input_ids: Optional[torch.LongTensor] = None,
max_length: Optional[int] = None,
min_length: Optional[int] = None,
do_sample: Optional[bool] = None,
early_stopping: Optional[bool] = None,
num_beams: Optional[int] = None,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
repetition_penalty: Optional[float] = None,
bad_words_ids: Optional[Iterable[int]] = None,
bos_token_id: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
length_penalty: Optional[float] = None,
no_repeat_ngram_size: Optional[int] = None,
num_return_sequences: Optional[int] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_start_token_id: Optional[int] = None,
use_cache: Optional[bool] = None,
**model_kwargs) -> torch.LongTensor:
r"""
Generates sequences for models with a language modeling head. The method currently supports greedy decoding,
beam-search decoding, sampling with temperature, sampling with top-k or nucleus sampling.
Arguments:
same as Huggingface Transformers
Return:
:obj:`torch.LongTensor` of shape :obj:`(batch_size * num_return_sequences, sequence_length)`:
The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
shorter if all batches finished early due to the :obj:`eos_token_id`.
"""
device = next(model.parameters()).device
input_ids = input_ids.to(device) # added extra; not in the original HF Transformers
# We cannot generate if the model does not have a LM head
if model.get_output_embeddings() is None:
raise AttributeError(
"You tried to generate sequences with a model that does not have a LM Head."
"Please use another model class (e.g. `OpenAIGPTLMHeadModel`, `XLNetLMHeadModel`, `GPT2LMHeadModel`, `CTRLLMHeadModel`, `T5WithLMHeadModel`, `TransfoXLLMHeadModel`, `XLMWithLMHeadModel`, `BartForConditionalGeneration` )"
)
max_length = max_length if max_length is not None else model.config.max_length
min_length = min_length if min_length is not None else model.config.min_length
do_sample = do_sample if do_sample is not None else model.config.do_sample
early_stopping = early_stopping if early_stopping is not None else model.config.early_stopping
use_cache = use_cache if use_cache is not None else model.config.use_cache
num_beams = num_beams if num_beams is not None else model.config.num_beams
# temperature = temperature if temperature is not None else model.config.temperature
# top_k = top_k if top_k is not None else model.config.top_k
# top_p = top_p if top_p is not None else model.config.top_p
repetition_penalty = repetition_penalty if repetition_penalty is not None else model.config.repetition_penalty
bos_token_id = bos_token_id if bos_token_id is not None else model.config.bos_token_id
pad_token_id = pad_token_id if pad_token_id is not None else model.config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else model.config.eos_token_id
length_penalty = length_penalty if length_penalty is not None else model.config.length_penalty
no_repeat_ngram_size = (
no_repeat_ngram_size if no_repeat_ngram_size is not None else model.config.no_repeat_ngram_size
)
bad_words_ids = bad_words_ids if bad_words_ids is not None else model.config.bad_words_ids
num_return_sequences = (
num_return_sequences if num_return_sequences is not None else model.config.num_return_sequences
)
decoder_start_token_id = (
decoder_start_token_id if decoder_start_token_id is not None else model.config.decoder_start_token_id
)
if input_ids is not None:
batch_size = input_ids.shape[0] # overriden by the input batch_size
else:
batch_size = 1
assert isinstance(max_length, int) and max_length > 0, "`max_length` should be a strictly positive integer."
assert isinstance(min_length, int) and min_length >= 0, "`min_length` should be a positive integer."
assert isinstance(do_sample, bool), "`do_sample` should be a boolean."
assert isinstance(early_stopping, bool), "`early_stopping` should be a boolean."
assert isinstance(use_cache, bool), "`use_cache` should be a boolean."
assert isinstance(num_beams, int) and num_beams > 0, "`num_beams` should be a strictly positive integer."
assert temperature > 0, "`temperature` should be strictly positive."
assert isinstance(top_k, int) and top_k >= 0, "`top_k` should be a positive integer."
assert 0 <= top_p <= 1, "`top_p` should be between 0 and 1."
assert repetition_penalty >= 1.0, "`repetition_penalty` should be >= 1."
assert input_ids is not None or (
isinstance(bos_token_id, int) and bos_token_id >= 0
), "If input_ids is not defined, `bos_token_id` should be a positive integer."
assert pad_token_id is None or (
isinstance(pad_token_id, int) and (pad_token_id >= 0)
), "`pad_token_id` should be a positive integer."
assert (eos_token_id is None) or (
isinstance(eos_token_id, int) and (eos_token_id >= 0)
), "`eos_token_id` should be a positive integer."
assert length_penalty > 0, "`length_penalty` should be strictly positive."
assert (
isinstance(no_repeat_ngram_size, int) and no_repeat_ngram_size >= 0
), "`no_repeat_ngram_size` should be a positive integer."
assert (
isinstance(num_return_sequences, int) and num_return_sequences > 0
), "`num_return_sequences` should be a strictly positive integer."
assert (
bad_words_ids is None or isinstance(bad_words_ids, list) and isinstance(bad_words_ids[0], list)
), "`bad_words_ids` is either `None` or a list of lists of tokens that should not be generated"
if input_ids is None:
assert isinstance(bos_token_id, int) and bos_token_id >= 0, (
"you should either supply a context to complete as `input_ids` input "
"or a `bos_token_id` (integer >= 0) as a first token to start the generation."
)
input_ids = torch.full(
(batch_size, 1),
bos_token_id,
dtype=torch.long,
device=next(model.parameters()).device,
)
else:
assert input_ids.dim() == 2, "Input prompt should be of shape (batch_size, sequence length)."
# not allow to duplicate outputs when greedy decoding
if do_sample is False:
if num_beams == 1:
# no_beam_search greedy generation conditions
assert (
num_return_sequences == 1
), "Greedy decoding will always produce the same output for num_beams == 1 and num_return_sequences > 1. Please set num_return_sequences = 1"
else:
# beam_search greedy generation conditions
assert (
num_beams >= num_return_sequences
), "Greedy beam search decoding cannot return more sequences than it has beams. Please set num_beams >= num_return_sequences"
# create attention mask if necessary
# TODO (PVP): this should later be handled by the forward fn() in each model in the future see PR 3140
if (attention_mask is None) and (pad_token_id is not None) and (pad_token_id in input_ids):
attention_mask = input_ids.ne(pad_token_id).long()
elif attention_mask is None:
attention_mask = input_ids.new_ones(input_ids.shape)
# set pad_token_id to eos_token_id if not set. Important that this is done after
# attention_mask is created
if pad_token_id is None and eos_token_id is not None:
logger.warning(
"Setting `pad_token_id` to {} (first `eos_token_id`) to generate sequence".format(eos_token_id)
)
pad_token_id = eos_token_id
# vocab size
if hasattr(model.config, "vocab_size"):
vocab_size = model.config.vocab_size
elif (
model.config.is_encoder_decoder
and hasattr(model.config, "decoder")
and hasattr(model.config.decoder, "vocab_size")
):
vocab_size = model.config.decoder.vocab_size
else:
raise ValueError("either model.config.vocab_size or model.config.decoder.vocab_size needs to be defined")
# set effective batch size and effective batch multiplier according to do_sample
if do_sample:
effective_batch_size = batch_size * num_return_sequences
effective_batch_mult = num_return_sequences
else:
effective_batch_size = batch_size
effective_batch_mult = 1
if model.config.is_encoder_decoder:
if decoder_start_token_id is None:
# see if BOS token can be used for decoder_start_token_id
if bos_token_id is not None:
decoder_start_token_id = bos_token_id
elif (
hasattr(model.config, "decoder")
and hasattr(model.config.decoder, "bos_token_id")
and model.config.decoder.bos_token_id is not None
):
decoder_start_token_id = model.config.decoder.bos_token_id
else:
raise ValueError(
"decoder_start_token_id or bos_token_id has to be defined for encoder-decoder generation"
)
assert hasattr(model, "get_encoder"), "{} should have a 'get_encoder' function defined".format(model)
assert callable(model.get_encoder), "{} should be a method".format(model.get_encoder)
# get encoder and store encoder outputs
encoder = model.get_encoder()
encoder_outputs: ModelOutput = encoder(input_ids, attention_mask=attention_mask, return_dict=True)
# Expand input ids if num_beams > 1 or num_return_sequences > 1
if num_return_sequences > 1 or num_beams > 1:
input_ids_len = input_ids.shape[-1]
input_ids = input_ids.unsqueeze(1).expand(batch_size, effective_batch_mult * num_beams, input_ids_len)
attention_mask = attention_mask.unsqueeze(1).expand(
batch_size, effective_batch_mult * num_beams, input_ids_len
)
input_ids = input_ids.contiguous().view(
effective_batch_size * num_beams, input_ids_len
) # shape: (batch_size * num_return_sequences * num_beams, cur_len)
attention_mask = attention_mask.contiguous().view(
effective_batch_size * num_beams, input_ids_len
) # shape: (batch_size * num_return_sequences * num_beams, cur_len)
if model.config.is_encoder_decoder:
# create empty decoder input_ids
input_ids = torch.full(
(effective_batch_size * num_beams, 1),
decoder_start_token_id,
dtype=torch.long,
device=next(model.parameters()).device,
)
cur_len = 1
assert (
batch_size == encoder_outputs.last_hidden_state.shape[0]
), f"expected encoder_outputs.last_hidden_state to have 1st dimension bs={batch_size}, got {encoder_outputs.last_hidden_state.shape[0]} "
# expand batch_idx to assign correct encoder output for expanded input_ids (due to num_beams > 1 and num_return_sequences > 1)
expanded_batch_idxs = (
torch.arange(batch_size)
.view(-1, 1)
.repeat(1, num_beams * effective_batch_mult)
.view(-1)
.to(input_ids.device)
)
# expand encoder_outputs
encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.index_select(
0, expanded_batch_idxs
)
# save encoder_outputs in `model_kwargs`
model_kwargs["encoder_outputs"] = encoder_outputs
else:
cur_len = input_ids.shape[-1]
assert (
cur_len < max_length
), f"The context has {cur_len} number of tokens, but `max_length` is only {max_length}. Please make sure that `max_length` is bigger than the number of tokens, by setting either `generate(max_length=...,...)` or `config.max_length = ...`"
if num_beams > 1:
raise ValueError('Cannot handle num_beams > 1')
else:
output = _generate_no_beam_search(model, input_ids,
cur_len=cur_len, max_length=max_length, min_length=min_length,
do_sample=do_sample, temperature=temperature, top_k=top_k, top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size, bad_words_ids=bad_words_ids,
pad_token_id=pad_token_id, eos_token_id=eos_token_id,
batch_size=effective_batch_size, attention_mask=attention_mask,
use_cache=use_cache, model_kwargs=model_kwargs)
return output
def _generate_no_beam_search(model, input_ids,
cur_len, max_length, min_length, do_sample,
temperature, top_k, top_p,
repetition_penalty, no_repeat_ngram_size, bad_words_ids,
pad_token_id, eos_token_id, batch_size, attention_mask, use_cache, model_kwargs):
"""Generate sequences for each example without beam search (num_beams == 1).
All returned sequence are generated independently.
"""
# length of generated sentences / unfinished sentences
unfinished_sents = input_ids.new(batch_size).fill_(1)
sent_lengths = input_ids.new(batch_size).fill_(max_length)
past = None
while cur_len < max_length:
model_inputs = model.prepare_inputs_for_generation(
input_ids, past=past, attention_mask=attention_mask,
use_cache=use_cache, **model_kwargs
)
outputs = model(**model_inputs, return_dict=True, output_hidden_states=True)
# logits: (batch size, 1, vocab size); hidden state: (batch size, 1, dim)
next_token_logits = outputs.logits[:, -1, :]
scores = postprocess_next_token_scores(
scores=next_token_logits,
input_ids=input_ids,
no_repeat_ngram_size=no_repeat_ngram_size,
bad_words_ids=bad_words_ids,
cur_len=cur_len,
min_length=min_length,
max_length=max_length,
eos_token_id=eos_token_id,
repetition_penalty=repetition_penalty,
batch_size=batch_size,
num_beams=1,
)
# if model has past, then set the past variable to speed up decoding
if "past_key_values" in outputs:
past = outputs.past_key_values
elif "mems" in outputs:
past = outputs.mems
if do_sample:
# Temperature (higher temperature => more likely to sample low probability tokens)
if temperature != 1.0:
scores = scores / temperature
# Top-p/top-k filtering
next_token_logscores = src.model_utils.my_top_k_top_p_filtering(
scores,
top_k=top_k, top_p=top_p,)
# Sample
probs = F.softmax(next_token_logscores, dim=-1)
next_token = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
# Greedy decoding
next_token = torch.argmax(next_token_logits, dim=-1)
# update generations and finished sentences
if eos_token_id is not None:
# pad finished sentences if eos_token_id exist
tokens_to_add = next_token * unfinished_sents + (pad_token_id) * (1 - unfinished_sents)
else:
tokens_to_add = next_token
# add token and increase length by one
input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1)
cur_len = cur_len + 1
if eos_token_id is not None:
eos_in_sents = tokens_to_add == eos_token_id
# if sentence is unfinished and the token to add is eos, sent_lengths is filled with current length
is_sents_unfinished_and_token_to_add_is_eos = unfinished_sents.mul(eos_in_sents.long()).bool()
sent_lengths.masked_fill_(is_sents_unfinished_and_token_to_add_is_eos, cur_len)
# unfinished_sents is set to zero if eos in sentence
unfinished_sents.mul_((~eos_in_sents).long())
# stop when there is a </s> in each sentence, or if we exceed the maximul length
if unfinished_sents.max() == 0:
break
# extend attention_mask for new generated input if only decoder
if model.config.is_encoder_decoder is False:
attention_mask = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
)
return input_ids
def batch_fn(iterable, n=1):
# n: batch size
l = len(iterable)
for i in range(0, l, n):
yield iterable[i:min(i+n, l)]
def get_default_batch_size(model_name, device, beam_size=1):
# heuristic to figure out max batch size for model based on GPU memory
twelve_gigs = 11719409664
if 'gpt2-large' in model_name:
default_batch_size = 8
elif 'gpt2-xl' in model_name:
default_batch_size = 2
elif 'gpt2-medium' in model_name:
default_batch_size = 20
elif 'gpt2' in model_name:
default_batch_size = 20
else:
# default_batch_size = 1
raise ValueError(f'Unknown model {model_name}')
if device == torch.device('cpu'):
bsz = default_batch_size
else:
mem = torch.cuda.get_device_properties(device).total_memory
bsz = int(mem / twelve_gigs * max(1, default_batch_size / beam_size))
bsz = max(1, bsz)
return bsz
def create_sample_fn(model, max_len,
top_p=1.0, top_k=0, temperature=1.0,
return_predicted_p=False):
# recalib_fn is applied after top-p/top-k/temp modifications
fn = lambda prompt: generate_text_from_recalibrated_model(
model, input_ids=prompt,
max_length=max_len, do_sample=True, temperature=temperature, top_k=top_k, top_p=top_p,)
return fn
def remove_eos_from_samples(samples, eos_token_id):
# samples: list of lists
remove_eos_fn = lambda l: [x for x in l if x != eos_token_id]
check_completed_fn = lambda l: any([x == eos_token_id for x in l])
new_samples = [remove_eos_fn(s) for s in samples]
is_completed = [check_completed_fn(s) for s in samples]
return new_samples, is_completed
@torch.no_grad()
def get_samples_from_sample_fn(sampl_fn, ds_tokens, eos_token_id, prompt_size=10, batch_size=20):
outs = []
b_valid_ds = list(batch_fn(ds_tokens, batch_size))
for b in tqdm(b_valid_ds):
prompt = torch.cat([sen[:, :prompt_size] for sen in b])
sample = sampl_fn(prompt)
outs.extend(sample.cpu().numpy().tolist())
# remove eos tokens which are added for padding
outs, is_completed = remove_eos_from_samples(outs, eos_token_id)
return outs, is_completed
def self_bleu_one_sentence(weights, all_sentences, smoothing_function, i):
return sentence_bleu(
references=all_sentences[:i] + all_sentences[i + 1:],
hypothesis=all_sentences[i],
weights=weights,
smoothing_function=smoothing_function)
def get_bleu_weight_for_ngram(n_gram):
if n_gram == 1:
weights = (1.0, 0, 0, 0)
elif n_gram == 2:
weights = (0.5, 0.5, 0, 0)
elif n_gram == 3:
weights = (1.0 / 3, 1.0 / 3, 1.0 / 3, 0)
elif n_gram == 4:
weights = (0.25, 0.25, 0.25, 0.25)
elif n_gram == 5:
weights = (0.2, 0.2, 0.2, 0.2, 0.2)
else:
raise ValueError
return weights