Skip to content

Commit 4e3be1a

Browse files
priyankatutejapriyankatuteja
andauthored
fixed few minor issues in samples and updated items_metadata file (Esri#962)
* updated sample * removed more * changed path * fixed * edited yaml with new samples * final done Co-authored-by: priyankatuteja <priyanka.datascience@gmail.com>
1 parent 7bc35c2 commit 4e3be1a

5 files changed

+144
-106
lines changed

items_metadata.yaml

Lines changed: 110 additions & 74 deletions
Original file line numberDiff line numberDiff line change
@@ -469,15 +469,15 @@ samples:
469469
description: This sample showcases two autoregressive methods. one using a deep learning and another using a machine learning framework to predict temperature of England.
470470
licenseInfo: ""
471471
tags: ["Data Science", "GIS", "Time Series", "Temperature", "Forecast"]
472-
- title: Plant species identification using a TensorFlow-Lite model within mobile devices
473-
url: https://geosaurus.maps.arcgis.com/home/item.html?id=fc21cc2f4a014a8e88f72d846b5afff1
474-
path: ./samples/04_gis_analysts_data_scientists/train_a_tensorflow-lite_model_for_identifying_plant_species.ipynb
475-
thumbnail: ./static/thumbnails/train_a_tensorflow-lite_model_for_identifying_plant_species.png
476-
snippet: Identify plant species using a tensorflow model
477-
description: This notebook intends to showcase this capability to train a deep learning model that can be used in mobile applications for a real time inferencing using TensorFlow Lite framework.
478-
licenseInfo: ""
479-
runtime: advanced_gpu
480-
tags: ["Data Science", "GIS", "TansorFlow Lite", "Plant Species", "Deep Learning"]
472+
# - title: Plant species identification using a TensorFlow-Lite model within mobile devices
473+
# url: https://geosaurus.maps.arcgis.com/home/item.html?id=fc21cc2f4a014a8e88f72d846b5afff1
474+
# path: ./samples/04_gis_analysts_data_scientists/train_a_tensorflow-lite_model_for_identifying_plant_species.ipynb
475+
# thumbnail: ./static/thumbnails/train_a_tensorflow-lite_model_for_identifying_plant_species.png
476+
# snippet: Identify plant species using a tensorflow model
477+
# description: This notebook intends to showcase this capability to train a deep learning model that can be used in mobile applications for a real time inferencing using TensorFlow Lite framework.
478+
# licenseInfo: ""
479+
# runtime: advanced_gpu
480+
# tags: ["Data Science", "GIS", "TansorFlow Lite", "Plant Species", "Deep Learning"]
481481
- title: Vehicle detection and tracking using deep learning
482482
url: https://geosaurus.maps.arcgis.com/home/item.html?id=871057ea4c864343900f36f3bf64b675
483483
path: ./samples/04_gis_analysts_data_scientists/vehicle_detection_and_tracking.ipynb
@@ -575,14 +575,14 @@ samples:
575575
description: The analysis below uses a geoprocessing tool to deduce the path that the debris of a crashed airplane would take if it went down at different places in the ocean.
576576
licenseInfo: ''
577577
tags: ['Data Science', 'GIS', "Geoprocessing tools"]
578-
- title: Hey GIS, Give me a map of the recent natural disasters
579-
url: https://geosaurus.maps.arcgis.com/home/item.html?id=7eae3c9f586f4d7ab7494b0494c9a97c
580-
path: ./samples/05_content_publishers/hey_gis_give_me_a_map_of_the_recent_natural_disasters.ipynb
581-
thumbnail: ./static/thumbnails/hey_gis_give_me_a_map_of_the_recent_natural_disasters.png
582-
snippet: hey gis give me a map of the recent natural disasters
583-
description: The sample notebook takes advantage of NASA's Earth Observatory Natural Event Tracker (EONET) API to collect a curated and continuously updated set of natural event metadata, and transform them into ArcGIS FeatureCollection(s) and save them into Web Maps in your GIS.
584-
licenseInfo: ''
585-
tags: ['Data Science', 'GIS', "Natural Disasters", "Map"]
578+
# - title: Hey GIS, Give me a map of the recent natural disasters
579+
# url: https://geosaurus.maps.arcgis.com/home/item.html?id=7eae3c9f586f4d7ab7494b0494c9a97c
580+
# path: ./samples/05_content_publishers/hey_gis_give_me_a_map_of_the_recent_natural_disasters.ipynb
581+
# thumbnail: ./static/thumbnails/hey_gis_give_me_a_map_of_the_recent_natural_disasters.png
582+
# snippet: hey gis give me a map of the recent natural disasters
583+
# description: The sample notebook takes advantage of NASA's Earth Observatory Natural Event Tracker (EONET) API to collect a curated and continuously updated set of natural event metadata, and transform them into ArcGIS FeatureCollection(s) and save them into Web Maps in your GIS.
584+
# licenseInfo: ''
585+
# tags: ['Data Science', 'GIS', "Natural Disasters", "Map"]
586586
- title: HTML Table to Pandas Data Frame to Portal Item
587587
url: https://geosaurus.maps.arcgis.com/home/item.html?id=8bbc583569244b2daabe8079c5644fc2
588588
path: ./samples/05_content_publishers/html_table_to_pandas_data_frame_to_portal_item.ipynb
@@ -599,46 +599,46 @@ samples:
599599
description: This notebook will search through all WebMap/WebScene/App Items in a portal/organization, identifying the 'insecure' ones if one or more service URLs use http\://.
600600
licenseInfo: ''
601601
tags: ['Data Science', 'GIS', "Insecure URL"]
602-
- title: Overwriting feature layers
603-
url: https://geosaurus.maps.arcgis.com/home/item.html?id=691578df03c04f88862bc61774501699
604-
path: ./samples/05_content_publishers/overwriting_feature_layers.ipynb
605-
thumbnail: ./static/thumbnails/overwriting_feature_layers.png
606-
snippet: overwriting feature layers
607-
description: In this sample, we edit individual features as updated datasets are available
608-
licenseInfo: ''
609-
tags: ['Data Science', 'GIS', "Overwrite", "Feature", "Layers"]
610-
- title: PDF Table to PDF Map
611-
url: https://geosaurus.maps.arcgis.com/home/item.html?id=d4124579b757443fa0577a93ad1d07ab
612-
path: ./samples/05_content_publishers/pdf_table_to_pdf_map.ipynb
613-
thumbnail: ./static/thumbnails/pdf_table_to_pdf_map.png
614-
snippet: pdf table to pdf map
615-
description: This sample shows how Pandas can be used to extract data from a table within a PDF file into the GIS for further analysis and visualization
616-
licenseInfo: ''
617-
tags: ['Data Science', 'GIS', "pdf", "Table", "Map"]
618-
- title: Publishing packages as web layers
619-
url: https://geosaurus.maps.arcgis.com/home/item.html?id=d759771e21344942b5b67cf34439c91c
620-
path: ./samples/05_content_publishers/publishing_packages_as_web_layers.ipynb
621-
thumbnail: ./static/thumbnails/publishing_packages_as_web_layers.png
622-
snippet: publishing packages as web layers
623-
description: In this sample, we will observe how to publish web layers from tile, vector tile and scene layer packages.
624-
licenseInfo: ''
625-
tags: ['Data Science', 'GIS', "Web", "Publish", "Layers"]
626-
- title: Publishing SDs, Shapefiles, and CSVs
627-
url: https://geosaurus.maps.arcgis.com/home/item.html?id=a1db6db172bc49a8932daacc2ed3d3ac
628-
path: ./samples/05_content_publishers/publishing_sd_shapefiles_and_csv.ipynb
629-
thumbnail: ./static/thumbnails/publishing_sd_shapefiles_and_csv.png
630-
snippet: publishing sd shapefiles and csv
631-
description: This sample notebook shows how different types of GIS datasets can be added to the GIS, and published as web layers.
632-
licenseInfo: ''
633-
tags: ['Data Science', 'GIS', "Shapefiles", "Publish", "CSV"]
634-
- title: Publishing web maps and web scenes
635-
url: https://geosaurus.maps.arcgis.com/home/item.html?id=9840ca386ee7480a880d84a497db41de
636-
path: ./samples/05_content_publishers/publishing_web_maps_and_web_scenes.ipynb
637-
thumbnail: ./static/thumbnails/publishing_web_maps_and_web_scenes.png
638-
snippet: publishing web maps and web scenes
639-
description: This sample demonstrates how to create and publish simple examples of web maps and scenes using the Python API.
640-
licenseInfo: ''
641-
tags: ['Data Science', 'GIS', "Maps", "Web Scenes", "Publish"]
602+
# - title: Overwriting feature layers
603+
# url: https://geosaurus.maps.arcgis.com/home/item.html?id=691578df03c04f88862bc61774501699
604+
# path: ./samples/05_content_publishers/overwriting_feature_layers.ipynb
605+
# thumbnail: ./static/thumbnails/overwriting_feature_layers.png
606+
# snippet: overwriting feature layers
607+
# description: In this sample, we edit individual features as updated datasets are available
608+
# licenseInfo: ''
609+
# tags: ['Data Science', 'GIS', "Overwrite", "Feature", "Layers"]
610+
# - title: PDF Table to PDF Map
611+
# url: https://geosaurus.maps.arcgis.com/home/item.html?id=d4124579b757443fa0577a93ad1d07ab
612+
# path: ./samples/05_content_publishers/pdf_table_to_pdf_map.ipynb
613+
# thumbnail: ./static/thumbnails/pdf_table_to_pdf_map.png
614+
# snippet: pdf table to pdf map
615+
# description: This sample shows how Pandas can be used to extract data from a table within a PDF file into the GIS for further analysis and visualization
616+
# licenseInfo: ''
617+
# tags: ['Data Science', 'GIS', "pdf", "Table", "Map"]
618+
# - title: Publishing packages as web layers
619+
# url: https://geosaurus.maps.arcgis.com/home/item.html?id=d759771e21344942b5b67cf34439c91c
620+
# path: ./samples/05_content_publishers/publishing_packages_as_web_layers.ipynb
621+
# thumbnail: ./static/thumbnails/publishing_packages_as_web_layers.png
622+
# snippet: publishing packages as web layers
623+
# description: In this sample, we will observe how to publish web layers from tile, vector tile and scene layer packages.
624+
# licenseInfo: ''
625+
# tags: ['Data Science', 'GIS', "Web", "Publish", "Layers"]
626+
# - title: Publishing SDs, Shapefiles, and CSVs
627+
# url: https://geosaurus.maps.arcgis.com/home/item.html?id=a1db6db172bc49a8932daacc2ed3d3ac
628+
# path: ./samples/05_content_publishers/publishing_sd_shapefiles_and_csv.ipynb
629+
# thumbnail: ./static/thumbnails/publishing_sd_shapefiles_and_csv.png
630+
# snippet: publishing sd shapefiles and csv
631+
# description: This sample notebook shows how different types of GIS datasets can be added to the GIS, and published as web layers.
632+
# licenseInfo: ''
633+
# tags: ['Data Science', 'GIS', "Shapefiles", "Publish", "CSV"]
634+
# - title: Publishing web maps and web scenes
635+
# url: https://geosaurus.maps.arcgis.com/home/item.html?id=9840ca386ee7480a880d84a497db41de
636+
# path: ./samples/05_content_publishers/publishing_web_maps_and_web_scenes.ipynb
637+
# thumbnail: ./static/thumbnails/publishing_web_maps_and_web_scenes.png
638+
# snippet: publishing web maps and web scenes
639+
# description: This sample demonstrates how to create and publish simple examples of web maps and scenes using the Python API.
640+
# licenseInfo: ''
641+
# tags: ['Data Science', 'GIS', "Maps", "Web Scenes", "Publish"]
642642
- title: Building a change detection app using Jupyter Dashboard
643643
url: https://geosaurus.maps.arcgis.com/home/item.html?id=e3a0e48329cf4213a15574dd4b6b7694
644644
path: ./samples/02_power_users_developers/building_a_change_detection_app_using_jupyter_dashboard.ipynb
@@ -700,14 +700,14 @@ samples:
700700
description: This sample shows you how to update the content of web maps and web scenes.
701701
licenseInfo: ""
702702
tags: ["Data Science", "GIS", "Text", "Classification"]
703-
- title: Updating features in a feature layer
704-
url: https://geosaurus.maps.arcgis.com/home/item.html?id=e8e2b0ac54584d079420b35b011d3d50
705-
path: ./samples/05_content_publishers/updating_features_in_a_feature_layer.ipynb
706-
thumbnail: ./static/thumbnails/default.png
707-
snippet: As content publishers, you may be required to keep certain web layers upto date. As new data arrives, you may have to append new features, update existing features etc.
708-
description: As content publishers, you may be required to keep certain web layers upto date. As new data arrives, you may have to append new features, update existing features etc.
709-
licenseInfo: ""
710-
tags: ["Data Science", "GIS", "Text", "Classification"]
703+
# - title: Updating features in a feature layer
704+
# url: https://geosaurus.maps.arcgis.com/home/item.html?id=e8e2b0ac54584d079420b35b011d3d50
705+
# path: ./samples/05_content_publishers/updating_features_in_a_feature_layer.ipynb
706+
# thumbnail: ./static/thumbnails/default.png
707+
# snippet: As content publishers, you may be required to keep certain web layers upto date. As new data arrives, you may have to append new features, update existing features etc.
708+
# description: As content publishers, you may be required to keep certain web layers upto date. As new data arrives, you may have to append new features, update existing features etc.
709+
# licenseInfo: ""
710+
# tags: ["Data Science", "GIS", "Text", "Classification"]
711711
- title: Land Parcel Extraction using Edge Detection model
712712
url: https://geosaurus.maps.arcgis.com/home/item.html?id=e164250b748240b5909159602dee826a
713713
path: ./samples/04_gis_analysts_data_scientists/land_parcel_extraction_using_edge_detection_deep_learning_model.ipynb
@@ -726,15 +726,15 @@ samples:
726726
licenseInfo: ""
727727
runtime: advanced_gpu
728728
tags: ["Data Science", "GIS", "Change Detection", "Deep Learning"]
729-
- title: Generating rgb imagery from digital surface model using Pix2Pix
730-
url: https://geosaurus.maps.arcgis.com/home/item.html?id=d2d58e9d0e624f4baddd983d8acea3da
731-
path: ./samples/04_gis_analysts_data_scientists/generating_rgb_imagery_from_digital_surface_model_using_pix2pix.ipynb
732-
thumbnail: ./static/thumbnails/default.png
733-
snippet: The aim of this notebook is to make use of arcgis.learn Pix2Pix model to translate or convert the gray-scale DSM to a RGB imagery.
734-
description: The aim of this notebook is to make use of arcgis.learn Pix2Pix model to translate or convert the gray-scale DSM to a RGB imagery.
735-
licenseInfo: ""
736-
runtime: advanced_gpu
737-
tags: ["Data Science", "GIS", "Image Translation", "Deep Learning"]
729+
# - title: Generating rgb imagery from digital surface model using Pix2Pix
730+
# url: https://geosaurus.maps.arcgis.com/home/item.html?id=d2d58e9d0e624f4baddd983d8acea3da
731+
# path: ./samples/04_gis_analysts_data_scientists/generating_rgb_imagery_from_digital_surface_model_using_pix2pix.ipynb
732+
# thumbnail: ./static/thumbnails/default.png
733+
# snippet: The aim of this notebook is to make use of arcgis.learn Pix2Pix model to translate or convert the gray-scale DSM to a RGB imagery.
734+
# description: The aim of this notebook is to make use of arcgis.learn Pix2Pix model to translate or convert the gray-scale DSM to a RGB imagery.
735+
# licenseInfo: ""
736+
# runtime: advanced_gpu
737+
# tags: ["Data Science", "GIS", "Image Translation", "Deep Learning"]
738738
# - title: Coastline extraction using Landsat-8 multispectral imagery and band ratio technique
739739
# url: https://geosaurus.maps.arcgis.com/home/item.html?id=4d8d5789a5e045bbbd02a01903841439
740740
# path: ./samples/04_gis_analysts_data_scientists/coastline_extraction-usa-landsat8_multispectral_imagery.ipynb
@@ -753,6 +753,42 @@ samples:
753753
licenseInfo: ""
754754
runtime: advanced_gpu
755755
tags: ["Data Science", "GIS", "Story Map", "Text Translation", "Deep Learning"]
756+
- title: Solar Energy prediction using Weather Variables
757+
url: https://geosaurus.maps.arcgis.com/home/item.html?id=7c28e6fce0584127b6656a98d3577d01
758+
path: ./samples/04_gis_analysts_data_scientists/solar-energy-prediction-using-weather-variables.ipynb
759+
thumbnail: ./static/thumbnails/default.png
760+
snippet: The aim of this notebook is to make use of arcgis.learn tabular models to predict solar energy using weather variables.
761+
description: The aim of this notebook is to make use of arcgis.learn tabular models to predict solar energy using weather variables.
762+
licenseInfo: ""
763+
runtime: advanced_gpu
764+
tags: ["Data Science", "GIS", "Solar energy prediction", "Deep Learning"]
765+
- title: Forecast Monthly Rainfall using TimeSeriesModel
766+
url: https://geosaurus.maps.arcgis.com/home/item.html?id=e2bf1e372de8495cbc3e66aed3aade3c
767+
path: ./samples/04_gis_analysts_data_scientists/forecasting_monthly_rainfall_in_california_using_deeplearning_timeseries_model_from_arcgis_learn.ipynb
768+
thumbnail: ./static/thumbnails/default.png
769+
snippet: The aim of this notebook is to make use of arcgis.learn TimeSeriesModel to forecast monthly rainfall in California.
770+
description: The aim of this notebook is to make use of arcgis.learn TimeSeriesModel to forecast monthly rainfall in California.
771+
licenseInfo: ""
772+
runtime: advanced_gpu
773+
tags: ["Data Science", "GIS", "Rainfall forecast", "Deep Learning"]
774+
- title: LandCover Classification using Hyperspectral Imagery and Deep Learning
775+
url: https://geosaurus.maps.arcgis.com/home/item.html?id=f253e07e0d3142ea87b4e024393c8eb0
776+
path: ./samples/04_gis_analysts_data_scientists/landcover_classification_using_hyperspectral_imagery_and_deep_learning.ipynb
777+
thumbnail: ./static/thumbnails/default.png
778+
snippet: The aim of this notebook is to make use of arcgis.learn UnetClassifier model to extract subclasses of two LULC classes: developed areas and forests.
779+
description: The aim of this notebook is to make use of arcgis.learn UnetClassifier model to extract subclasses of two LULC classes: developed areas and forests.
780+
licenseInfo: ""
781+
runtime: advanced_gpu
782+
tags: ["Data Science", "GIS", "Hyperspectral", "Deep Learning"]
783+
- title: Streams Extraction using MultiTaskRoadExtractor
784+
url: https://geosaurus.maps.arcgis.com/home/item.html?id=356899f6baad407b9db49bb526073ee1
785+
path: ./samples/04_gis_analysts_data_scientists/streams_extraction_using_multi_task_road_extractor.ipynb
786+
thumbnail: ./static/thumbnails/default.png
787+
snippet: The aim of this notebook is to make use of arcgis.learn MultiTaskRoadExtractor model to extract streams.
788+
description: The aim of this notebook is to make use of arcgis.learn MultiTaskRoadExtractor model to extract streams.
789+
licenseInfo: ""
790+
runtime: advanced_gpu
791+
tags: ["Data Science", "GIS", "Stream Extraction", "Deep Learning"]
756792
guides: []
757793
labs:
758794
- title: Create Data

samples/04_gis_analysts_data_scientists/sar_to_rgb_image_translation_using_cyclegan.ipynb

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -397,7 +397,7 @@
397397
}
398398
],
399399
"source": [
400-
"model.lr_find()"
400+
"lr = model.lr_find()"
401401
]
402402
},
403403
{
@@ -724,7 +724,7 @@
724724
}
725725
],
726726
"source": [
727-
"model.fit(25, lr=2e-04)"
727+
"model.fit(25, lr=lr)"
728728
]
729729
},
730730
{
@@ -842,7 +842,8 @@
842842
}
843843
],
844844
"source": [
845-
"model.predict(r\"D:\\CycleGAN\\Data\\data_for_cyclegan_le_3Bands\\Images\\train_a\\000000005.jpg\", convert_to=\"b\")"
845+
"#un-comment the cell to run predict over your desired image.\n",
846+
"# model.predict(r\"D:\\CycleGAN\\Data\\data_for_cyclegan_le_3Bands\\Images\\train_a\\000000005.jpg\", convert_to=\"b\")"
846847
]
847848
},
848849
{
@@ -870,7 +871,8 @@
870871
}
871872
],
872873
"source": [
873-
"model.predict(r\"D:\\CycleGAN\\Data\\data_for_cyclegan_le_3Bands\\Images\\train_b\\000000008.jpg\", convert_to=\"a\")"
874+
"#un-comment the cell to run predict over your desired image.\n",
875+
"# model.predict(r\"D:\\CycleGAN\\Data\\data_for_cyclegan_le_3Bands\\Images\\train_b\\000000008.jpg\", convert_to=\"a\")"
874876
]
875877
},
876878
{

0 commit comments

Comments
 (0)