docs
Folders and files
Name | Name | Last commit date | ||
---|---|---|---|---|
parent directory.. | ||||
<!DOCTYPE html> <!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]--> <!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]--> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>PackNet-SfM: 3D Packing for Self-Supervised Monocular Depth Estimation — PackNet-SfM 1.0 documentation</title> <script type="text/javascript" src="_static/js/modernizr.min.js"></script> <script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script> <script src="_static/jquery.js"></script> <script src="_static/underscore.js"></script> <script src="_static/doctools.js"></script> <script src="_static/language_data.js"></script> <script type="text/javascript" src="_static/js/theme.js"></script> <link rel="stylesheet" href="_static/css/theme.css" type="text/css" /> <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> <link rel="stylesheet" href="_static/custom.css" type="text/css" /> <link rel="index" title="Index" href="genindex.html" /> <link rel="search" title="Search" href="search.html" /> </head> <body class="wy-body-for-nav"> <div class="wy-grid-for-nav"> <nav data-toggle="wy-nav-shift" class="wy-nav-side"> <div class="wy-side-scroll"> <div class="wy-side-nav-search" > <a href="index.html"> <img src="_static/logo.png" class="logo" alt="Logo"/> </a> <div role="search"> <form id="rtd-search-form" class="wy-form" action="search.html" method="get"> <input type="text" name="q" placeholder="Search docs" /> <input type="hidden" name="check_keywords" value="yes" /> <input type="hidden" name="area" value="default" /> </form> </div> </div> <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation"> <p class="caption"><span class="caption-text">Contents</span></p> <ul> <li class="toctree-l1"><a class="reference internal" href="configs/configs.html">Configs</a></li> <li class="toctree-l1"><a class="reference internal" href="scripts/scripts.html">Scripts</a></li> <li class="toctree-l1"><a class="reference internal" href="trainers/trainers.html">Trainers</a></li> <li class="toctree-l1"><a class="reference internal" href="datasets/datasets.html">Datasets</a></li> <li class="toctree-l1"><a class="reference internal" href="models/models.html">Models</a></li> <li class="toctree-l1"><a class="reference internal" href="networks/networks.html">Networks</a></li> <li class="toctree-l1"><a class="reference internal" href="losses/losses.html">Losses</a></li> <li class="toctree-l1"><a class="reference internal" href="loggers/loggers.html">Loggers</a></li> <li class="toctree-l1"><a class="reference internal" href="geometry/geometry.html">Geometry</a></li> <li class="toctree-l1"><a class="reference internal" href="utils/utils.html">Utils</a></li> </ul> <p class="caption"><span class="caption-text">Contact</span></p> <ul> <li class="toctree-l1"><a class="reference external" href="https://tri.global">Toyota Research Institute</a></li> <li class="toctree-l1"><a class="reference external" href="https://github.com/TRI-ML/packnet-sfm">PackNet-SfM GitHub</a></li> <li class="toctree-l1"><a class="reference external" href="https://github.com/TRI-ML/DDAD">DDAD GitHub</a></li> </ul> </div> </div> </nav> <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"> <nav class="wy-nav-top" aria-label="top navigation"> <i data-toggle="wy-nav-top" class="fa fa-bars"></i> <a href="index.html">PackNet-SfM</a> </nav> <div class="wy-nav-content"> <div class="rst-content"> <div role="navigation" aria-label="breadcrumbs navigation"> <ul class="wy-breadcrumbs"> <li><a href="index.html">Docs</a> »</li> <li>PackNet-SfM: 3D Packing for Self-Supervised Monocular Depth Estimation</li> <li class="wy-breadcrumbs-aside"> <a href="_sources/README.rst.txt" rel="nofollow"> View page source</a> </li> </ul> <hr/> </div> <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article"> <div itemprop="articleBody"> <div class="section" id="packnet-sfm-3d-packing-for-self-supervised-monocular-depth-estimation"> <h1>PackNet-SfM: 3D Packing for Self-Supervised Monocular Depth Estimation</h1> <p><a class="reference external" href="#install">Install</a> // <a class="reference external" href="#datasets">Datasets</a> // <a class="reference external" href="#training">Training</a> // <a class="reference external" href="#evaluation">Evaluation</a> // <a class="reference external" href="#models">Models</a> // <a class="reference external" href="#license">License</a> // <a class="reference external" href="#references">References</a></p> <p>Official <a class="reference external" href="https://pytorch.org/">PyTorch</a> implementation of <em>self-supervised</em> monocular depth estimation methods invented by the ML Team at <a class="reference external" href="https://www.tri.global/">Toyota Research Institute (TRI)</a>, in particular for <em>PackNet</em>: <a class="reference external" href="https://arxiv.org/abs/1905.02693">3D Packing for Self-Supervised Monocular Depth Estimation (CVPR 2020 oral)</a>, <em>Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raventos and Adrien Gaidon</em>. Although self-supervised (i.e. trained only on monocular videos), PackNet outperforms other self, semi, and fully supervised methods. Furthermore, it gets better with input resolution and number of parameters, generalizes better, and can run in real-time (with TensorRT). See <a class="reference external" href="#references">References</a> for more info on our models.</p> </div> <div class="section" id="install"> <h1>Install</h1> <p>You need a machine with recent Nvidia drivers and a GPU with at least 6GB of memory (more for the bigger models at higher resolution). We recommend using docker (see <a class="reference external" href="https://github.com/NVIDIA/nvidia-docker">nvidia-docker2</a> instructions) to have a reproducible environment. To setup your environment, type in a terminal (only tested in Ubuntu 18.04):</p> <div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>git clone https://github.com/TRI-ML/packnet-sfm.git <span class="nb">cd</span> packnet-sfm <span class="c1"># if you want to use docker (recommended)</span> make docker-build </pre></div> </div> <p>We will list below all commands as if run directly inside our container. To run any of the commands in a container, you can either start the container in interactive mode with <code class="docutils literal notranslate"><span class="pre">make</span> <span class="pre">docker-start-interactive</span></code> to land in a shell where you can type those commands, or you can do it in one step:</p> <div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="c1"># single GPU</span> make docker-run <span class="nv">COMMAND</span><span class="o">=</span><span class="s2">"some-command"</span> <span class="c1"># multi-GPU</span> make docker-run-mpi <span class="nv">COMMAND</span><span class="o">=</span><span class="s2">"some-command"</span> </pre></div> </div> <p>For instance, to verify that the environment is setup correctly, you can run a simple overfitting test:</p> <div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="c1"># download a tiny subset of KITTI</span> curl -s https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/datasets/KITTI_tiny.tar <span class="p">|</span> tar xv -C /data/datasets/ <span class="c1"># in docker</span> make docker-run <span class="nv">COMMAND</span><span class="o">=</span><span class="s2">"python3 scripts/train.py configs/overfit_kitti.yaml"</span> </pre></div> </div> <p>If you want to use features related to <a class="reference external" href="https://aws.amazon.com/">AWS</a> (for dataset access) and <a class="reference external" href="https://www.wandb.com/">Weights & Biases (WANDB)</a> (for experiment management/visualization), then you should create associated accounts and configure your shell with the following environment variables:</p> <div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="nb">export</span> <span class="nv">AWS_SECRET_ACCESS_KEY</span><span class="o">=</span><span class="s2">"something"</span> <span class="nb">export</span> <span class="nv">AWS_ACCESS_KEY_ID</span><span class="o">=</span><span class="s2">"something"</span> <span class="nb">export</span> <span class="nv">AWS_DEFAULT_REGION</span><span class="o">=</span><span class="s2">"something"</span> <span class="nb">export</span> <span class="nv">WANDB_ENTITY</span><span class="o">=</span><span class="s2">"something"</span> <span class="nb">export</span> <span class="nv">WANDB_API_KEY</span><span class="o">=</span><span class="s2">"something"</span> </pre></div> </div> <p>To enable WANDB logging and AWS checkpoint syncing, you can then set the corresponding configuration parameters in <code class="docutils literal notranslate"><span class="pre">configs/<your</span> <span class="pre">config>.yaml</span></code> (cf. <a class="reference external" href="https://github.com/TRI-ML/packnet-sfm_internal/blob/master/configs/default_config.py">configs/default_config.py</a> for defaults and docs):</p> <div class="highlight-yaml notranslate"><div class="highlight"><pre><span></span><span class="nt">wandb</span><span class="p">:</span> <span class="nt">dry_run</span><span class="p">:</span> <span class="l l-Scalar l-Scalar-Plain">True</span> <span class="c1"># Wandb dry-run (not logging)</span> <span class="nt">name</span><span class="p">:</span> <span class="s">''</span> <span class="c1"># Wandb run name</span> <span class="nt">project</span><span class="p">:</span> <span class="l l-Scalar l-Scalar-Plain">os.environ.get("WANDB_PROJECT", "")</span> <span class="c1"># Wandb project</span> <span class="nt">entity</span><span class="p">:</span> <span class="l l-Scalar l-Scalar-Plain">os.environ.get("WANDB_ENTITY", "")</span> <span class="c1"># Wandb entity</span> <span class="nt">tags</span><span class="p">:</span> <span class="p p-Indicator">[]</span> <span class="c1"># Wandb tags</span> <span class="nt">dir</span><span class="p">:</span> <span class="s">''</span> <span class="c1"># Wandb save folder</span> <span class="nt">checkpoint</span><span class="p">:</span> <span class="nt">s3_path</span><span class="p">:</span> <span class="s">''</span> <span class="c1"># s3 path for AWS model syncing</span> <span class="nt">s3_frequency</span><span class="p">:</span> <span class="l l-Scalar l-Scalar-Plain">1</span> <span class="c1"># How often to s3 sync</span> </pre></div> </div> <p>If you encounter out of memory issues, try a lower <code class="docutils literal notranslate"><span class="pre">batch_size</span></code> parameter in the config file.</p> <p>NB: if you would rather not use docker, you could create a <a class="reference external" href="https://docs.conda.io/en/latest/">conda</a> environment via following the steps in the Dockerfile and mixing <code class="docutils literal notranslate"><span class="pre">conda</span></code> and <code class="docutils literal notranslate"><span class="pre">pip</span></code> at your own risks…</p> </div> <div class="section" id="datasets"> <h1>Datasets</h1> <p>Datasets are assumed to be downloaded in <code class="docutils literal notranslate"><span class="pre">/data/datasets/<dataset-name></span></code> (can be a symbolic link).</p> <div class="section" id="dense-depth-for-autonomous-driving-ddad"> <h2>Dense Depth for Autonomous Driving (DDAD)</h2> <p>Together with PackNet, we introduce <strong>Dense Depth for Automated Driving</strong> (<a class="reference external" href="https://github.com/TRI-ML/DDAD">DDAD</a>): a new dataset that leverages diverse logs from TRI’s fleet of well-calibrated self-driving cars equipped with cameras and high-accuracy long-range LiDARs. Compared to existing benchmarks, DDAD enables much more accurate 360 degree depth evaluation at range, see the official <a class="reference external" href="https://github.com/TRI-ML/DDAD">DDAD repository</a> for more info and instructions. You can also download DDAD directly via:</p> <div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>curl -s https://tri-ml-public.s3.amazonaws.com/github/DDAD/datasets/DDAD.tar <span class="p">|</span> tar -xv -C /data/datasets/ </pre></div> </div> </div> <div class="section" id="kitti"> <h2>KITTI</h2> <p>The KITTI (raw) dataset used in our experiments can be downloaded from the <a class="reference external" href="http://www.cvlibs.net/datasets/kitti/raw_data.php">KITTI website</a>. For convenience, we provide the standard splits used for training and evaluation: <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/splits/KITTI/eigen_zhou_files.txt">eigen_zhou</a>, <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/splits/KITTI/eigen_train_files.txt">eigen_train</a>, <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/splits/KITTI/eigen_val_files.txt">eigen_val</a> and <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/splits/KITTI/eigen_test_files.txt">eigen_test</a>, as well as pre-computed ground-truth depth maps: <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/depth_maps/KITTI_raw_velodyne.tar.gz">original</a> and <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/depth_maps/KITTI_raw_groundtruth.tar.gz">improved</a>. The full KITTI_raw dataset, as used in our experiments, can be directly downloaded <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/datasets/KITTI_raw.tar.gz">here</a> or with the following command:</p> <div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="c1"># KITTI_raw</span> curl -s https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/datasets/KITTI_raw.tar <span class="p">|</span> tar -xv -C /data/datasets/ </pre></div> </div> </div> <div class="section" id="tiny-ddad-kitti"> <h2>Tiny DDAD/KITTI</h2> <p>For simple tests, we also provide a “tiny” version of <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/datasets/DDAD_tiny.tar">DDAD</a> and <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/datasets/KITTI_tiny.tar">KITTI</a>:</p> <div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="c1"># DDAD_tiny</span> curl -s https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/datasets/DDAD_tiny.tar <span class="p">|</span> tar -xv -C /data/datasets/ <span class="c1"># KITTI_tiny</span> curl -s https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/datasets/KITTI_tiny.tar <span class="p">|</span> tar -xv -C /data/datasets/ </pre></div> </div> </div> </div> <div class="section" id="training"> <h1>Training</h1> <p>PackNet can be trained from scratch in a fully self-supervised way (from video only, cf. <a class="reference external" href="#cvpr-packnet">CVPR’20</a>), in a semi-supervised way (with sparse lidar using our reprojected 3D loss, cf. <a class="reference external" href="#corl-ssl">CoRL’19</a>), and it can also use a fixed pre-trained semantic segmentation network to guide the representation learning further (cf. <a class="reference external" href="#iclr-semguided">ICLR’20</a>).</p> <p>Any training, including fine-tuning, can be done by passing either a <code class="docutils literal notranslate"><span class="pre">.yaml</span></code> config file or a <code class="docutils literal notranslate"><span class="pre">.ckpt</span></code> model checkpoint to <a class="reference external" href="https://github.com/TRI-ML/packnet-sfm_internal/blob/master/scripts/train.py">scripts/train.py</a>:</p> <div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>python3 scripts/train.py <config.yaml or checkpoint.ckpt> </pre></div> </div> <p>If you pass a config file, training will start from scratch using the parameters in that config file. Example config files are in <a class="reference external" href="https://github.com/TRI-ML/packnet-sfm_internal/blob/master/configs">configs</a>. If you pass instead a <code class="docutils literal notranslate"><span class="pre">.ckpt</span></code> file, training will continue from the current checkpoint state.</p> <p>Note that it is also possible to define checkpoints within the config file itself. These can be done either individually for the depth and/or pose networks or by defining a checkpoint to the model itself, which includes all sub-networks (setting the model checkpoint will overwrite depth and pose checkpoints). In this case, a new training session will start and the networks will be initialized with the model state in the <code class="docutils literal notranslate"><span class="pre">.ckpt</span></code> file(s). Below we provide the locations in the config file where these checkpoints are defined:</p> <div class="highlight-yaml notranslate"><div class="highlight"><pre><span></span><span class="nt">checkpoint</span><span class="p">:</span> <span class="c1"># Folder where .ckpt files will be saved during training</span> <span class="nt">filepath</span><span class="p">:</span> <span class="l l-Scalar l-Scalar-Plain">/path/to/where/checkpoints/will/be/saved</span> <span class="nt">model</span><span class="p">:</span> <span class="c1"># Checkpoint for the model (depth + pose)</span> <span class="nt">checkpoint_path</span><span class="p">:</span> <span class="l l-Scalar l-Scalar-Plain">/path/to/model.ckpt</span> <span class="nt">depth_net</span><span class="p">:</span> <span class="c1"># Checkpoint for the depth network</span> <span class="nt">checkpoint_path</span><span class="p">:</span> <span class="l l-Scalar l-Scalar-Plain">/path/to/depth_net.ckpt</span> <span class="nt">pose_net</span><span class="p">:</span> <span class="c1"># Checkpoint for the pose network</span> <span class="nt">checkpoint_path</span><span class="p">:</span> <span class="l l-Scalar l-Scalar-Plain">/path/to/pose_net.ckpt</span> </pre></div> </div> <p>Every aspect of the training configuration can be controlled by modifying the yaml config file. This include the model configuration (self-supervised, semi-supervised, loss parameters, etc), depth and pose networks configuration (choice of architecture and different parameters), optimizers and schedulers (learning rates, weight decay, etc), datasets (name, splits, depth types, etc) and much more. For a comprehensive list please refer to <a class="reference external" href="https://github.com/TRI-ML/packnet-sfm_internal/blob/master/configs/default_config.py">configs/default_config.py</a>.</p> </div> <div class="section" id="evaluation"> <h1>Evaluation</h1> <p>Similar to the training case, to evaluate a trained model (cf. above or our <a class="reference external" href="#models">pre-trained models</a>) you need to provide a <code class="docutils literal notranslate"><span class="pre">.ckpt</span></code> checkpoint, followed optionally by a <code class="docutils literal notranslate"><span class="pre">.yaml</span></code> config file that overrides the configuration stored in the checkpoint.</p> <div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>python3 scripts/eval.py --checkpoint <checkpoint.ckpt> <span class="o">[</span>--config <config.yaml><span class="o">]</span> </pre></div> </div> <p>You can also directly run inference on a single image or folder:</p> <div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>python3 scripts/infer.py --checkpoint <checkpoint.ckpt> --input <image or folder> --output <image or folder> <span class="o">[</span>--image_shape <input shape <span class="o">(</span>h,w<span class="o">)</span>><span class="o">]</span> </pre></div> </div> </div> <div class="section" id="models"> <h1>Models</h1> <div class="section" id="ddad"> <h2>DDAD</h2> <table class="docutils align-default"> <colgroup> <col style="width: 74%" /> <col style="width: 5%" /> <col style="width: 5%" /> <col style="width: 5%" /> <col style="width: 5%" /> <col style="width: 5%" /> </colgroup> <thead> <tr class="row-odd"><th class="head"><p>Model</p></th> <th class="head"><p>Abs.Rel.</p></th> <th class="head"><p>Sqr.Rel</p></th> <th class="head"><p>RMSE</p></th> <th class="head"><p>RMSElog</p></th> <th class="head"><p>d < 1.25</p></th> </tr> </thead> <tbody> <tr class="row-even"><td><p><em>ResNet18, Self-Supervised, 384x640, ImageNet → DDAD (D)</em></p></td> <td><p><em>0.213</em></p></td> <td><p><em>4.975</em></p></td> <td><p><em>18.051</em></p></td> <td><p><em>0.340</em></p></td> <td><p><em>0.761</em></p></td> </tr> <tr class="row-odd"><td><p><em>PackNet, Self-Supervised, 384x640, DDAD (D)</em></p></td> <td><p><em>0.162</em></p></td> <td><p><em>3.917</em></p></td> <td><p><em>13.452</em></p></td> <td><p><em>0.269</em></p></td> <td><p><em>0.823</em></p></td> </tr> <tr class="row-even"><td><p><a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/models/ResNet18_MR_selfsup_D.ckpt">ResNet18, Self-Supervised, 384x640, ImageNet → DDAD (D)</a>*</p></td> <td><p>0.227</p></td> <td><p>11.293</p></td> <td><p>17.368</p></td> <td><p>0.303</p></td> <td><p>0.758</p></td> </tr> <tr class="row-odd"><td><p><a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/models/PackNet01_MR_selfsup_D.ckpt">PackNet, Self-Supervised, 384x640, DDAD (D)</a>*</p></td> <td><p>0.173</p></td> <td><p>7.164</p></td> <td><p>14.363</p></td> <td><p>0.249</p></td> <td><p>0.835</p></td> </tr> </tbody> </table> <p>*: Note that this repository’s results differ slightly from the ones reported in our <a class="reference external" href="https://arxiv.org/abs/1905.02693">CVPR’20 paper</a> (first two rows), although conclusions are the same. Since CVPR’20, we have officially released an updated <a class="reference external" href="https://github.com/TRI-ML/DDAD">DDAD dataset</a> to account for privacy constraints and improve scene distribution. Please use the latest numbers when comparing to the official DDAD release.</p> </div> <div class="section" id="id1"> <h2>KITTI</h2> <table class="docutils align-default"> <colgroup> <col style="width: 75%" /> <col style="width: 6%" /> <col style="width: 5%" /> <col style="width: 4%" /> <col style="width: 5%" /> <col style="width: 6%" /> </colgroup> <thead> <tr class="row-odd"><th class="head"><p>Model</p></th> <th class="head"><p>Abs.Rel.</p></th> <th class="head"><p>Sqr.Rel</p></th> <th class="head"><p>RMSE</p></th> <th class="head"><p>RMSElog</p></th> <th class="head"><p>d < 1.25</p></th> </tr> </thead> <tbody> <tr class="row-even"><td><p><a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/models/ResNet18_MR_selfsup_K.ckpt">ResNet18, Self-Supervised, 192x640, ImageNet → KITTI (K)</a></p></td> <td><p>0.116</p></td> <td><p>0.811</p></td> <td><p>4.902</p></td> <td><p>0.198</p></td> <td><p>0.865</p></td> </tr> <tr class="row-odd"><td><p><a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/models/PackNet01_MR_selfsup_K.ckpt">PackNet, Self-Supervised, 192x640, KITTI (K)</a></p></td> <td><p>0.111</p></td> <td><p>0.800</p></td> <td><p>4.576</p></td> <td><p>0.189</p></td> <td><p>0.880</p></td> </tr> <tr class="row-even"><td><p><a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/models/PackNet01_MR_velsup_CStoK.ckpt">PackNet, Self-Supervised Scale-Aware, 192x640, CS → K</a></p></td> <td><p>0.108</p></td> <td><p>0.758</p></td> <td><p>4.506</p></td> <td><p>0.185</p></td> <td><p>0.887</p></td> </tr> <tr class="row-odd"><td><p><a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/models/PackNet01_HR_velsup_CStoK.ckpt">PackNet, Self-Supervised Scale-Aware, 384x1280, CS → K</a></p></td> <td><p>0.106</p></td> <td><p>0.838</p></td> <td><p>4.545</p></td> <td><p>0.186</p></td> <td><p>0.895</p></td> </tr> <tr class="row-even"><td><p><a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/models/PackNet01_MR_semisup_CStoK.ckpt">PackNet, Semi-Supervised (densified GT), 192x640, CS → K</a></p></td> <td><p>0.072</p></td> <td><p>0.335</p></td> <td><p>3.220</p></td> <td><p>0.115</p></td> <td><p>0.934</p></td> </tr> </tbody> </table> <p>All experiments followed the <a class="reference external" href="https://arxiv.org/abs/1406.2283">Eigen et al.</a> protocol for <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/splits/KITTI/eigen_zhou_files.txt">training</a> and <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/splits/KITTI/eigen_test_files.txt">evaluation</a>, with <a class="reference external" href="https://people.eecs.berkeley.edu/~tinghuiz/projects/SfMLearner/">Zhou et al</a>’s preprocessing to remove static training frames. The PackNet model pre-trained on Cityscapes used for fine-tuning on KITTI can be found <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/models/PackNet01_MR_selfsup_CS.ckpt">here</a>.</p> </div> <div class="section" id="precomputed-depth-maps"> <h2>Precomputed Depth Maps</h2> <p>For convenience, we also provide pre-computed depth maps for supervised training and evaluation:</p> <ul class="simple"> <li><p>PackNet, Self-Supervised Scale-Aware, 192x640, CS → K | <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/depth_maps/KITTI_raw/eigen_train_files/KITTI_raw-eigen_train_files-PackNet01_MR_velsup_CStoK.tar.gz">eigen_train_files</a> | <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/depth_maps/KITTI_raw/eigen_zhou_files/KITTI_raw-eigen_zhou_files-PackNet01_MR_velsup_CStoK.tar.gz">eigen_zhou_files</a> | <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/depth_maps/KITTI_raw/eigen_val_files/KITTI_raw-eigen_val_files-PackNet01_MR_velsup_CStoK.tar.gz">eigen_val_files</a> | <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/depth_maps/KITTI_raw/eigen_test_files/KITTI_raw-eigen_test_files-PackNet01_MR_velsup_CStoK.tar.gz">eigen_test_files</a> |</p></li> <li><p>PackNet, Semi-Supervised (densified GT), 192x640, CS → K | <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/depth_maps/KITTI_raw/eigen_train_files/KITTI_raw-eigen_train_files-PackNet01_MR_semisup_CStoK.tar.gz">eigen_train_files</a> | <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/depth_maps/KITTI_raw/eigen_zhou_files/KITTI_raw-eigen_zhou_files-PackNet01_MR_semisup_CStoK.tar.gz">eigen_zhou_files</a> | <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/depth_maps/KITTI_raw/eigen_val_files/KITTI_raw-eigen_val_files-PackNet01_MR_semisup_CStoK.tar.gz">eigen_val_files</a> | <a class="reference external" href="https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/depth_maps/KITTI_raw/eigen_test_files/KITTI_raw-eigen_test_files-PackNet01_MR_semisup_CStoK.tar.gz">eigen_test_files</a> |</p></li> </ul> </div> </div> <div class="section" id="license"> <h1>License</h1> <p>The source code is released under the <a class="reference external" href="LICENSE.md">MIT license</a>.</p> </div> <div class="section" id="references"> <h1>References</h1> <p><a class="reference external" href="#cvpr-packnet">PackNet</a> relies on symmetric packing and unpacking blocks to jointly learn to compress and decompress detail-preserving representations using 3D convolutions. It also uses depth superresolution, which we introduce in <a class="reference external" href="#icra-superdepth">SuperDepth (ICRA 2019)</a>. Our network can also output metrically scaled depth thanks to our weak velocity supervision (<a class="reference external" href="#cvpr-packnet">CVPR 2020</a>).</p> <p>We also experimented with sparse supervision from as few as 4-beam LiDAR sensors, using a novel reprojection loss that minimizes distance errors in the image plane (<a class="reference external" href="#corl-ssl">CoRL 2019</a>). By enforcing a sparsity-inducing data augmentation policy for ego-motion learning, we were also able to effectively regularize the pose network and enable stronger generalization performance (<a class="reference external" href="#corl-pose">CoRL 2019</a>). In a follow-up work, we propose the injection of semantic information directly into the decoder layers of the depth networks, using pixel-adaptive convolutions to create semantic-aware features and further improve performance (<a class="reference external" href="#iclr-semguided">ICLR 2020</a>).</p> <p>Depending on the application, please use the following citations when referencing our work:</p> <p><strong>3D Packing for Self-Supervised Monocular Depth Estimation (CVPR 2020 oral)</strong>, <em>Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raventos and Adrien Gaidon</em>, <a class="reference external" href="https://arxiv.org/abs/1905.02693">[paper]</a>, <a class="reference external" href="https://www.youtube.com/watch?v=b62iDkLgGSI">[video]</a></p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="nd">@inproceedings</span><span class="p">{</span><span class="n">packnet</span><span class="p">,</span> <span class="n">author</span> <span class="o">=</span> <span class="p">{</span><span class="n">Vitor</span> <span class="n">Guizilini</span> <span class="ow">and</span> <span class="n">Rares</span> <span class="n">Ambrus</span> <span class="ow">and</span> <span class="n">Sudeep</span> <span class="n">Pillai</span> <span class="ow">and</span> <span class="n">Allan</span> <span class="n">Raventos</span> <span class="ow">and</span> <span class="n">Adrien</span> <span class="n">Gaidon</span><span class="p">},</span> <span class="n">title</span> <span class="o">=</span> <span class="p">{</span><span class="mi">3</span><span class="n">D</span> <span class="n">Packing</span> <span class="k">for</span> <span class="n">Self</span><span class="o">-</span><span class="n">Supervised</span> <span class="n">Monocular</span> <span class="n">Depth</span> <span class="n">Estimation</span><span class="p">},</span> <span class="n">booktitle</span> <span class="o">=</span> <span class="p">{</span><span class="n">IEEE</span> <span class="n">Conference</span> <span class="n">on</span> <span class="n">Computer</span> <span class="n">Vision</span> <span class="ow">and</span> <span class="n">Pattern</span> <span class="n">Recognition</span> <span class="p">(</span><span class="n">CVPR</span><span class="p">)},</span> <span class="n">primaryClass</span> <span class="o">=</span> <span class="p">{</span><span class="n">cs</span><span class="o">.</span><span class="n">CV</span><span class="p">}</span> <span class="n">year</span> <span class="o">=</span> <span class="p">{</span><span class="mi">2020</span><span class="p">},</span> <span class="p">}</span> </pre></div> </div> <p><strong>Semantically-Guided Representation Learning for Self-Supervised Monocular Depth (ICLR 2020)</strong>, <em>Vitor Guizilini, Rui Hou, Jie Li, Rares Ambrus and Adrien Gaidon</em>, <a class="reference external" href="https://arxiv.org/abs/2002.12319">[paper]</a></p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="nd">@inproceedings</span><span class="p">{</span><span class="n">packnet</span><span class="o">-</span><span class="n">semguided</span><span class="p">,</span> <span class="n">author</span> <span class="o">=</span> <span class="p">{</span><span class="n">Vitor</span> <span class="n">Guizilini</span> <span class="ow">and</span> <span class="n">Rui</span> <span class="n">Hou</span> <span class="ow">and</span> <span class="n">Jie</span> <span class="n">Li</span> <span class="ow">and</span> <span class="n">Rares</span> <span class="n">Ambrus</span> <span class="ow">and</span> <span class="n">Adrien</span> <span class="n">Gaidon</span><span class="p">},</span> <span class="n">title</span> <span class="o">=</span> <span class="p">{</span><span class="n">Semantically</span><span class="o">-</span><span class="n">Guided</span> <span class="n">Representation</span> <span class="n">Learning</span> <span class="k">for</span> <span class="n">Self</span><span class="o">-</span><span class="n">Supervised</span> <span class="n">Monocular</span> <span class="n">Depth</span><span class="p">},</span> <span class="n">booktitle</span> <span class="o">=</span> <span class="p">{</span><span class="n">International</span> <span class="n">Conference</span> <span class="n">on</span> <span class="n">Learning</span> <span class="n">Representations</span> <span class="p">(</span><span class="n">ICLR</span><span class="p">)}</span> <span class="n">month</span> <span class="o">=</span> <span class="p">{</span><span class="n">April</span><span class="p">},</span> <span class="n">year</span> <span class="o">=</span> <span class="p">{</span><span class="mi">2020</span><span class="p">},</span> <span class="p">}</span> </pre></div> </div> <p><strong>Robust Semi-Supervised Monocular Depth Estimation with Reprojected Distances (CoRL 2019 spotlight)</strong>, <em>Vitor Guizilini, Jie Li, Rares Ambrus, Sudeep Pillai and Adrien Gaidon</em>, <a class="reference external" href="https://arxiv.org/abs/1910.01765">[paper]</a>,<a class="reference external" href="https://www.youtube.com/watch?v=cSwuF-XA4sg">[video]</a></p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="nd">@inproceedings</span><span class="p">{</span><span class="n">packnet</span><span class="o">-</span><span class="n">semisup</span><span class="p">,</span> <span class="n">author</span> <span class="o">=</span> <span class="p">{</span><span class="n">Vitor</span> <span class="n">Guizilini</span> <span class="ow">and</span> <span class="n">Jie</span> <span class="n">Li</span> <span class="ow">and</span> <span class="n">Rares</span> <span class="n">Ambrus</span> <span class="ow">and</span> <span class="n">Sudeep</span> <span class="n">Pillai</span> <span class="ow">and</span> <span class="n">Adrien</span> <span class="n">Gaidon</span><span class="p">},</span> <span class="n">title</span> <span class="o">=</span> <span class="p">{</span><span class="n">Robust</span> <span class="n">Semi</span><span class="o">-</span><span class="n">Supervised</span> <span class="n">Monocular</span> <span class="n">Depth</span> <span class="n">Estimation</span> <span class="k">with</span> <span class="n">Reprojected</span> <span class="n">Distances</span><span class="p">},</span> <span class="n">booktitle</span> <span class="o">=</span> <span class="p">{</span><span class="n">Conference</span> <span class="n">on</span> <span class="n">Robot</span> <span class="n">Learning</span> <span class="p">(</span><span class="n">CoRL</span><span class="p">)}</span> <span class="n">month</span> <span class="o">=</span> <span class="p">{</span><span class="n">October</span><span class="p">},</span> <span class="n">year</span> <span class="o">=</span> <span class="p">{</span><span class="mi">2019</span><span class="p">},</span> <span class="p">}</span> </pre></div> </div> <p><strong>Two Stream Networks for Self-Supervised Ego-Motion Estimation (CoRL 2019 spotlight)</strong>, <em>Rares Ambrus, Vitor Guizilini, Jie Li, Sudeep Pillai and Adrien Gaidon</em>, <a class="reference external" href="https://arxiv.org/abs/1910.01764">[paper]</a></p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="nd">@inproceedings</span><span class="p">{</span><span class="n">packnet</span><span class="o">-</span><span class="n">twostream</span><span class="p">,</span> <span class="n">author</span> <span class="o">=</span> <span class="p">{</span><span class="n">Rares</span> <span class="n">Ambrus</span> <span class="ow">and</span> <span class="n">Vitor</span> <span class="n">Guizilini</span> <span class="ow">and</span> <span class="n">Jie</span> <span class="n">Li</span> <span class="ow">and</span> <span class="n">Sudeep</span> <span class="n">Pillai</span> <span class="ow">and</span> <span class="n">Adrien</span> <span class="n">Gaidon</span><span class="p">},</span> <span class="n">title</span> <span class="o">=</span> <span class="p">{{</span><span class="n">Two</span> <span class="n">Stream</span> <span class="n">Networks</span> <span class="k">for</span> <span class="n">Self</span><span class="o">-</span><span class="n">Supervised</span> <span class="n">Ego</span><span class="o">-</span><span class="n">Motion</span> <span class="n">Estimation</span><span class="p">}},</span> <span class="n">booktitle</span> <span class="o">=</span> <span class="p">{</span><span class="n">Conference</span> <span class="n">on</span> <span class="n">Robot</span> <span class="n">Learning</span> <span class="p">(</span><span class="n">CoRL</span><span class="p">)}</span> <span class="n">month</span> <span class="o">=</span> <span class="p">{</span><span class="n">October</span><span class="p">},</span> <span class="n">year</span> <span class="o">=</span> <span class="p">{</span><span class="mi">2019</span><span class="p">},</span> <span class="p">}</span> </pre></div> </div> <p><strong>SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation (ICRA 2019)</strong>, <em>Sudeep Pillai, Rares Ambrus and Adrien Gaidon</em>, <a class="reference external" href="https://arxiv.org/abs/1810.01849">[paper]</a>, <a class="reference external" href="https://www.youtube.com/watch?v=jKNgBeBMx0I&t=33s">[video]</a></p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="nd">@inproceedings</span><span class="p">{</span><span class="n">superdepth</span><span class="p">,</span> <span class="n">author</span> <span class="o">=</span> <span class="p">{</span><span class="n">Sudeep</span> <span class="n">Pillai</span> <span class="ow">and</span> <span class="n">Rares</span> <span class="n">Ambrus</span> <span class="ow">and</span> <span class="n">Adrien</span> <span class="n">Gaidon</span><span class="p">},</span> <span class="n">title</span> <span class="o">=</span> <span class="p">{</span><span class="n">SuperDepth</span><span class="p">:</span> <span class="n">Self</span><span class="o">-</span><span class="n">Supervised</span><span class="p">,</span> <span class="n">Super</span><span class="o">-</span><span class="n">Resolved</span> <span class="n">Monocular</span> <span class="n">Depth</span> <span class="n">Estimation</span><span class="p">},</span> <span class="n">booktitle</span> <span class="o">=</span> <span class="p">{</span><span class="n">IEEE</span> <span class="n">International</span> <span class="n">Conference</span> <span class="n">on</span> <span class="n">Robotics</span> <span class="ow">and</span> <span class="n">Automation</span> <span class="p">(</span><span class="n">ICRA</span><span class="p">)}</span> <span class="n">month</span> <span class="o">=</span> <span class="p">{</span><span class="n">May</span><span class="p">},</span> <span class="n">year</span> <span class="o">=</span> <span class="p">{</span><span class="mi">2019</span><span class="p">},</span> <span class="p">}</span> </pre></div> </div> </div> </div> </div> <footer> <hr/> <div role="contentinfo"> <p> © Copyright 2020, Toyota Research Institute (TRI) </p> </div> Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. </footer> </div> </div> </section> </div> <script type="text/javascript"> jQuery(function () { SphinxRtdTheme.Navigation.enable(false); }); </script> </body> </html>