-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPresentation.tex
208 lines (169 loc) · 4.63 KB
/
Presentation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
%!TEX program = xelatex
\documentclass[10pt, compress, xetex]{beamer}
\usepackage{polyglossia}
\setmainlanguage[spelling=new,babelshorthands=true]{german}
\usetheme{m}
\frenchspacing
\usepackage{hyperref}
\urlstyle{same}
\usepackage{mathtools}
\newtheorem{theo}{Theorem}
\usepackage{pgfplots}
\pgfplotsset{compat=1.9}
\usepackage{multicol}
\logo{\includegraphics[scale=0.3]{tumlogo.pdf}}
\beamertemplatenavigationsymbolsempty
\title{Proseminar: Data Mining}
\subtitle{Neuronale Netze: Grundlagen}
\author{Lukas Krenz}
\date{12. Juni 2015}
\institute{Technische Universität München}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}{Die Magie}
\begin{columns}[c]
\begin{column}[c]{.33\textwidth}
\includegraphics[height=3.66cm]{figures/guitar.png}
man in black shirt is playing guitar.
\end{column}
\begin{column}[c]{.33\textwidth}
\includegraphics[height=3.66cm]{figures/dogbar.png}
black and white dog jumps over bar.
\end{column}
\begin{column}[c]{.33\textwidth}
\includegraphics[height=3.66cm]{figures/teddy.jpeg}
a woman holding a teddy bear in front of a mirror.
\end{column}
\end{columns}
Quelle: Deep Visual-Semantic Alignments for Generating Image Descriptions, CVPR 2015
\end{frame}
\begin{frame}{Was sind Neuronale Netze?}
Neuronale Netze sind ein:
\begin{itemize}
\item graphisches
\item nicht-lineares
\item flexibles
\end{itemize}
Modell für maschinelles Lernen.
\end{frame}
\begin{frame}{Topologie}
\begin{figure}[ht!]
\label{fig:MLP}
\centering
\input{graph_neural_network}
\caption{Ein 2-schichtiges MLP.}
\end{figure}
\end{frame}
\begin{frame}{Aktivierungsfunktionen}
\begin{columns}[c]
\begin{column}[c]{.6\textwidth}
\begin{figure}[ht!]
\centering
\caption{Die logistische Funktion $\sigma_1$}
\begin{tikzpicture}[scale=0.80]
\begin{axis}%
[
grid=major,
xmin=-6,
xmax=6,
axis x line=bottom,
ytick={0,.5,1},
ymax=1,
axis y line=middle,
]
\addplot%
[
blue,%
mark=none,
samples=100,
domain=-6:6,
]
(x,{1/(1+exp(-x))});
\end{axis}
\end{tikzpicture}
\end{figure}
\end{column}
\begin{column}[c]{.5\textwidth}
\begin{align}
\sigma_1(x) & = \frac{1}{1+e^{-x}} \\
\sigma_2(x) & = \tanh(x) = \frac{1-e^{-2x}}{1+e^{-2x}} \\
\sigma_3(x) & = \max(0,x)
\end{align}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Feedforward}
\begin{figure}[ht!]
%\label{fig:MLP}
\centering
\input{graph_neural_network} %TODO: Create smaller version of graphic without annotations.
\end{figure}
\begin{align}
\text{net}_j & = \sum_{i} w_{ji} y_i = w_j^t x \\
y_j & = \sigma (\text{net}_j)
\end{align}
\end{frame}
\begin{frame}{Backprop}
\begin{align}
E &= \sum_{k=1}^K \sum_{i=1}^N \left( y_i^k - t_i^k \right)^2 \\
&= \sum_n E_n(y_1, \ldots, y_c)
\end{align}
\begin{equation}
\frac{\partial E^n}{\partial w_{ij}} = \frac{\partial E^n}{\partial net_j} \frac{\partial net_j }{\partial w_{ji}}
\end{equation}
\end{frame}
\begin{frame}{Backprop (ctd.)}
\begin{align}
\frac{\partial net_j }{\partial w_{ji}} & = y_i
\\
\frac{\partial E^n}{\partial net_j} & = \delta_j
\\
\frac{\partial E^n}{\partial w_{i,j}} &= y_i \delta_j
\end{align}
\begin{equation}
\label{eq:backpropagation}
\delta_j = \begin{cases}
\sigma ' (net_j) (y_j - t_j) & \text{wenn j Ausgabeneuron ist}\\
\sigma ' (net_j) \sum_k w_{kj} \delta_k & \text{wenn j verdecktes Neuron ist}
\end{cases}
\end{equation}
\end{frame}
\begin{frame}{Optimierung}
\begin{columns}[c]
\begin{column}[c]{.3\textwidth}
\begin{figure}[ht!]
\centering
\caption{Die Rosenbrock Funktion $(1-x)^2 + 100(y - x^2)^2$}
\input{3dplot.tex}
\end{figure}
\end{column}
\begin{column}[c]{.7\textwidth}
\begin{align}
x_{n+1} &=x_n- \eta \nabla F(x_n) \\
\Delta_w^t &= - \eta \nabla_w E(w;t)
\end{align}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Diskussion und Ausblick}
\begin{columns}[T]
\begin{column}[T]{.5\textwidth}
Vorteile:
\begin{itemize}
\item mächtig
\item flexibel
\end{itemize}
\end{column}
\begin{column}[T]{.5\textwidth}
Nachteile
\begin{itemize}
\item viele Parameter, kompliziert anzupassen
\item langsam
\end{itemize}
\end{column}
\end{columns}
In der \alert{aktuellen} Forschung relevant: Netze anderer Topologien
\end{frame}
\end{document}