-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathLfpLoader.cpp
148 lines (123 loc) · 4.04 KB
/
LfpLoader.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#include "LfpLoader.h"
//#include "lfpsplitter.h" // does not work
#include "lfpsplitter.c"
#include <iostream> // used for debugging
#include <opencv2/imgproc/imgproc.hpp>
const char LfpLoader::IMAGE_KEY[] = "image";
const char LfpLoader::WIDTH_KEY[] = "width";
const char LfpLoader::HEIGHT_KEY[] = "height";
LfpLoader::LfpLoader(void)
{
}
LfpLoader::LfpLoader(const string& path)
{
// 1) split raw file
const char* cFileName = path.c_str();
char *period = NULL;
lfp_file_p lfp = NULL;
if (!(lfp = lfp_create(cFileName))) {
lfp_close(lfp);
throw new std::runtime_error("Failed to open file.");
}
if (!lfp_file_check(lfp)) {
lfp_close(lfp);
throw new std::runtime_error("File is no LFP raw file.");
}
/*
// save the first part of the filename to name the jpgs later
if (!(lfp->filename = strdup(cFileName))) {
lfp_close(lfp);
throw new std::runtime_error("Error extracting filename.");
}
period = strrchr(lfp->filename,'.');
if (period) *period = '\0';
*/
lfp_parse_sections(lfp);
// 2) extract image metadata
int width, height, imageLength;
char* image;
rapidjson::Document doc;
for (lfp_section_p section = lfp->sections; section != NULL; section = section->next)
{
switch (section->type) {
case LFP_RAW_IMAGE:
image = section->data;
imageLength = section->len;
break;
case LFP_JSON:
doc.Parse<0>(section->data);
if (doc.HasParseError())
{
lfp_close(lfp);
throw new std::runtime_error("A JSON parsing error occured.");
}
// if this is JSON document 1
if (doc.HasMember(IMAGE_KEY))
{
const rapidjson::Value& image = doc[IMAGE_KEY];
height = image[HEIGHT_KEY].GetInt();
width = image[WIDTH_KEY].GetInt();
readMetadata(doc);
}
// if this is JSON document 2
else if (doc["camera"].HasMember("serialNumber"))
{
this->cameraSerialNumber = doc["camera"]["serialNumber"].GetString();
}
break;
}
}
if (width == NULL || height == NULL || image == NULL || imageLength == NULL)
{
lfp_close(lfp);
throw new std::runtime_error("Image metadata not found.");
}
// 3) extract image to Mat
int buflen = 0;
char *buf;
buf = converted_image((unsigned char *)image, &buflen, imageLength);
Mat bayerImage(height, width, CV_16UC1, (unsigned short*) buf);
lfp_close(lfp);
this->bayerImage = bayerImage;
}
LfpLoader::~LfpLoader(void)
{
}
void LfpLoader::readMetadata(const rapidjson::Document& doc)
{
const rapidjson::Value& devices = doc["devices"];
const rapidjson::Value& lens = devices["lens"];
const rapidjson::Value& mla = devices["mla"];
const rapidjson::Value& scaleFactor = mla["scaleFactor"];
const rapidjson::Value& sensorOffset = mla["sensorOffset"];
const rapidjson::Value& image = doc["image"];
const rapidjson::Value& rawDetails = image["rawDetails"];
const rapidjson::Value& pixelFormat = rawDetails["pixelFormat"];
const rapidjson::Value& color = image["color"];
const rapidjson::Value& whiteBalanceGain = color["whiteBalanceGain"];
const rapidjson::Value& ccmRgbToSrgbArray = color["ccmRgbToSrgbArray"];
this->pixelPitch = devices["sensor"]["pixelPitch"].GetDouble();
this->focalLength = lens["focalLength"].GetDouble();
this->lambdaInfinity = lens["infinityLambda"].GetDouble();
this->lensPitch = mla["lensPitch"].GetDouble();
this->rotationAngle = mla["rotation"].GetDouble();
this->scaleFactor = Vec2d(scaleFactor["x"].GetDouble(),
scaleFactor["y"].GetDouble());
this->sensorOffset = Vec3d(sensorOffset["x"].GetDouble(),
sensorOffset["y"].GetDouble(),
sensorOffset["z"].GetDouble());
this->black = pixelFormat["black"]["r"].GetInt();
this->white = pixelFormat["white"]["r"].GetInt();
this->gamma = color["gamma"].GetDouble();
double r = whiteBalanceGain["r"].GetDouble();
double g = whiteBalanceGain["gr"].GetDouble();
double b = whiteBalanceGain["b"].GetDouble();
this->whiteBalancingMatrix = (Mat_<double>(3,3) <<
b, 0, 0,
0, g, 0,
0, 0, r);
double tmpVec[9];
for (int i = 0; i < 9; i++)
tmpVec[i] = ccmRgbToSrgbArray[i].GetDouble();
this->colorCorrectionMatrix = Mat(3, 3,CV_64FC1, tmpVec).clone();
}