Additional Documentation can be found in Wiki
This package contains the minimal set of bindings for Kokkos interoperability with Python:
- Free-standing function bindings
Kokkos::initialize(...)
Kokkos::finalize()
Kokkos::is_initialized()
Kokkos::deep_copy(...)
Kokkos::create_mirror(...)
Kokkos::create_mirror_view(...)
Kokkos::Tools::profileLibraryLoaded()
Kokkos::Tools::pushRegion(...)
Kokkos::Tools::popRegion()
Kokkos::Tools::createProfileSection(...)
Kokkos::Tools::destroyProfileSection(...)
Kokkos::Tools::startSection(...)
Kokkos::Tools::stopSection(...)
Kokkos::Tools::markEvent(...)
Kokkos::Tools::declareMetadata(...)
Kokkos::Tools::Experimental::set_<...>_callback(...)
- Data structures
Kokkos::View<...>
Kokkos::DynRankView<...>
Kokkos_Profiling_KokkosPDeviceInfo
Kokkos_Profiling_SpaceHandle
By importing this package in Python, you can pass the supported Kokkos Views and DynRankViews from C++ to Python and vice-versa. Furthermore, in Python, these bindings provide interoperability with numpy and cupy arrays:
import kokkos
import numpy as np
view = kokkos.array([2, 2], dtype=kokkos.double, space=kokkos.CudaUVMSpace,
layout=kokkos.LayoutRight, trait=kokkos.RandomAccess,
dynamic=False)
arr = np.array(view, copy=False)
In order to write native Kokkos in Python, see pykokkos.
You can install this package via CMake or Python's setup.py
. The important cmake options are:
ENABLE_VIEW_RANKS
(integer)ENABLE_LAYOUTS
(bool)ENABLE_MEMORY_TRAITS
(bool)ENABLE_INTERNAL_KOKKOS
(bool)
By default, CMake will enable the layouts and memory traits options if the Kokkos installation was not
built with CUDA support.
If Kokkos was built with CUDA support, ENABLE_MEMORY_TRAITS
will be disabled by default due to unreasonable
compilation times (> 1 hour).
The ENABLE_VIEW_RANKS
option (defaults to a value of 4) is the max number of ranks for
Kokkos::View<...>
that can be returned to Python. For example, value of 4 means that
views of data type T*
, T**
, T***
, and T****
can be returned to python but
T*****
and higher cannot. Increasing this value up to 7 can dramatically increase the length
of time required to compile the bindings.
If the ENABLE_INTERNAL_KOKKOS
option is not specified the first time CMake is run, CMake will try to
find an existing Kokkos installation. If no existing installation is found, it will build and install
Kokkos from a submodule. When Kokkos is added as a submodule, you can configure the submodule
as you would normally configure Kokkos. However, due to some general awkwardness configuring cmake
from setup.py
(especially via pip install
), CMake tries to "automatically" configure
reasonable default CMake settings for the Kokkos submodule.
Here are the steps when Kokkos is added as a submodule:
- Does
external/kokkos/CMakeLists.txt
exists?- YES: assumes the submodule is already checked out
-
If compute node does not have internet access, checkout submodule before installing!
-
- NO: does
.gitmodules
exist?- YES:
git submodule update --init external/kokkos
- NO:
git clone -b master https://github.com/kokkos/kokkos.git external/kokkos
- YES:
- YES: assumes the submodule is already checked out
- Set
BUILD_SHARED_LIBS=ON
- Set
Kokkos_ENABLE_SERIAL=ON
find_package(OpenMP)
- Was OpenMP found?
- YES: set
Kokkos_ENABLE_OPENMP=ON
- NO:
find_package(Threads)
- Was Threads found?
- YES: set
Kokkos_ENABLE_THREADS=ON
(if not Windows)
- YES: set
- Was Threads found?
- YES: set
- Was OpenMP found?
find_package(CUDA)
- Was CUDA found?
- YES: set:
Kokkos_ENABLE_CUDA=ON
Kokkos_ENABLE_CUDA_UVM=ON
Kokkos_ENABLE_CUDA_LAMBDA=ON
- YES: set:
- Was CUDA found?
cmake -DENABLE_LAYOUTS=ON -DENABLE_MEMORY_TRAITS=OFF /path/to/source
There are three ways to configure the options:
- Via the Python argparse options
--enable-<option>
and--disable-<option>
- Setting the
PYKOKKOS_BASE_SETUP_ARGS
environment variable to the CMake options - Passing in the CMake options after a
--
All three lines below are equivalent:
python setup.py install --enable-layouts --disable-memory-traits
PYKOKKOS_BASE_SETUP_ARGS="-DENABLE_LAYOUTS=ON -DENABLE_MEMORY_TRAITS=OFF" python setup.py install
python setup.py install -- -DENABLE_LAYOUTS=ON -DENABLE_MEMORY_TRAITS=OFF
Pip does not handle build options well. Thus, it is recommended to use the PYKOKKOS_BASE_SETUP_ARGS
environment variable noted above. However, using the --install-option
for pip is possible but
each "space" must have it's own --install-option
, e.g. all of the following are equivalent:
All three lines below are equivalent:
pip install pykokkos-base --install-option=--enable-layouts --install-option=--disable-memory-traits
pip install pykokkos-base --install-option=-- --install-option=-DENABLE_LAYOUTS=ON --install-option=-DENABLE_MEMORY_TRAITS=OFF
pip install pykokkos-base --install-option={--enable-layouts,--disable-memory-traits}
pip install pykokkos-base --install-option={--,-DENABLE_LAYOUTS=ON,-DENABLE_MEMORY_TRAITS=OFF}
pip install pykokkos-base
will build against the latest release in the PyPi repository. In order to pip install from this repository, usepip install --user -e .
If you are not familiar with Kokkos::deep_copy(...)
, Kokkos::create_mirror(...)
, Kokkos::create_mirror_view(...)
, read this
Kokkos Wiki entry.
When Kokkos views are allocated on a non-host memory space, this data is not directly accessible in Python. Any attempt to read or modify the data will result in a fatal error. In C++, Kokkos developers usually perform two distinct operations: create a mirror or mirror-view and then execute a deep-copy, e.g.:
// assume MemorySpace is Kokkos::Cuda or similar
Kokkos::View<int*, MemorySpace> a ("a", 10);
// Allocate a view in HostSpace with the layout and padding of a
auto b = create_mirror(a);
// This is always a memcopy
Kokkos::deep_copy (b, a);
// This may not allocate a new view if a is in host space
auto c = Kokkos::create_mirror_view(a);
// This is a no-op if MemorySpace is HostSpace
Kokkos::deep_copy (c, a)
The python equivalent is available via standalone functions:
# assume MemorySpace is kokkos.CudaSpace or similar
a = kokkos.array("a", shape=[10], space=MemorySpace)
# Allocate a view in HostSpace with the layout and padding of a
b = kokkos.create_mirror(a)
# copy memory
kokkos.deep_copy(b, a)
# This may not allocate a new view if a is in host space
c = kokkos.create_mirror_view(a)
# This is a no-op if MemorySpace is HostSpace
kokkos.deep_copy(c, a)
However, this makes it cumbersome to print data in python:
# assume MemorySpace is kokkos.CudaSpace or similar
a = kokkos.array("a", shape=[10], space=MemorySpace)
def print_data(inp):
v = kokkos.create_mirror_view(inp)
kokkos.deep_copy(v, inp)
for i in range(v.shape[0]):
print(f"v({i}) = {v[i]}")
print_data(a)
Thus, the member functions create_mirror()
and create_mirror_view()
accept a boolean
copy
argument which defaults to True, e.g.:
a = kokkos.array("a", shape=[10], space=MemorySpace)
# this:
b = a.create_mirror()
# is implicitly:
b = a.create_mirror(copy=True)
Thus, our print_data
function above does not need handle mirror creation because
we can replace print_data(a)
with print_data(a.create_mirror())
or print_data(a.create_mirror_view())
:
# assume MemorySpace is kokkos.CudaSpace or similar
a = kokkos.array("a", shape=[10], space=MemorySpace)
def print_data(v):
for i in range(v.shape[0]):
print(f"v({i}) = {v[i]}")
print_data(a.create_mirror_view())
In fact, the free-standing kokkos.create_mirror(...)
and kokkoos.create_mirror_view(...)
simply use this member function
and default the copy
argument to False
:
def create_mirror(src, copy=False):
"""Performs Kokkos::create_mirror"""
return src.create_mirror(copy)
def create_mirror_view(src, copy=False):
"""Performs Kokkos::create_mirror_view"""
return src.create_mirror_view(copy)
This example is designed to emulate a work-flow where the user has code using Kokkos in C++ and writes python bindings to those functions. A python script is used as the "main"
:
ex-numpy.py
imports the kokkos bindings- Calls a routine in the "users" python bindings to a C++ function which returns a
Kokkos::View
- This view is then converted to a numpy array in python and printed via the numpy capabilities.
- ex-generate.cpp
- This is the python bindings to the user code
- user.cpp
- This is the implementation of the user's code which returns a
Kokkos::View<double**, Kokkos::HostSpace>
- This is the implementation of the user's code which returns a
- ex-numpy.py
- This is the "main"
#!/usr/bin/env python
import argparse
import numpy as np
#
# The python bindings for generate_view are in ex-generate.cpp
# The declaration and definition of generate_view are in user.hpp and user.cpp
# The generate_view function will return a Kokkos::View and will be converted
# to a numpy array
from ex_generate import generate_view, modify_view
#
# Importing this module is necessary to call kokkos init/finalize and
# import the python bindings to Kokkos::View which generate_view will
# return
#
import kokkos
def print_data(label, name, data):
# write the type info
print(
"{:12} : {} (ndim={}, shape={})".format(
label, type(data).__name__, data.ndim, data.shape
)
)
# print the data
if data.ndim == 1:
for i in range(data.shape[0]):
print("{:8}({}) = {}".format(name, i, data[i]))
elif data.ndim == 2:
for i in range(data.shape[0]):
print(
"{:8}({}) = [{}]".format(
name,
i,
" ".join("{}".format(data[i, j]) for j in range(data.shape[1])),
)
)
else:
raise ValueError("only 2 dimensions are supported")
def user_bindings(args):
# get the kokkos view
view = generate_view(args.ndim)
print_data("Kokkos View", "view", view.create_mirror_view())
# modify view (verify that casting works)
modify_view(view)
print_data("Modify View", "view", view.create_mirror_view())
# wrap the buffer protocal as numpy array without copying the data
arr = np.array(view.create_mirror_view(), copy=False)
print_data("Numpy Array", "arr", arr)
def to_numpy(args):
# get the kokkos view
view = kokkos.array(
"python_allocated_view",
[args.ndim],
dtype=kokkos.double,
space=kokkos.DefaultHostMemorySpace,
)
for i in range(view.shape[0]):
view[i] = i * (i % 2)
print_data("Kokkos View", "view", view)
# wrap the buffer protocal as numpy array without copying the data
arr = np.array(view, copy=False)
print_data("Numpy Array", "arr", arr)
def from_numpy(args):
arr = np.ones([args.ndim, args.ndim], dtype=np.int32)
for i in range(args.ndim):
arr[i, i] = 0
print_data("Numpy Array", "arr", arr)
view = kokkos.array(arr, dtype=kokkos.int32, dynamic=True)
print_data("Kokkos View", "view", view)
if __name__ == "__main__":
try:
kokkos.initialize()
parser = argparse.ArgumentParser()
parser.add_argument("-n", "--ndim", default=10, help="X dimension", type=int)
args, argv = parser.parse_known_args()
print("Executing to numpy...")
to_numpy(args)
print("Executing from numpy...")
from_numpy(args)
print("Executing user bindings...")
user_bindings(args)
kokkos.finalize()
except Exception as e:
import sys
import traceback
print(f"{e}")
exc_type, exc_value, exc_traceback = sys.exc_info()
traceback.print_exception(exc_type, exc_value, exc_traceback)
sys.exit(1)
mkdir build
cd build
cmake -DENABLE_EXAMPLES=ON ..
make
python ./ex-numpy.py
[user-bindings]> Generating View... Done.
[user-bindings]> Modifying View... Done.
Executing to numpy...
Kokkos View : KokkosView_float64_HostSpace_LayoutRight_1 (ndim=1, shape=[10])
view (0) = 0.0
view (1) = 1.0
view (2) = 0.0
view (3) = 3.0
view (4) = 0.0
view (5) = 5.0
view (6) = 0.0
view (7) = 7.0
view (8) = 0.0
view (9) = 9.0
Numpy Array : ndarray (ndim=1, shape=(10,))
arr (0) = 0.0
arr (1) = 1.0
arr (2) = 0.0
arr (3) = 3.0
arr (4) = 0.0
arr (5) = 5.0
arr (6) = 0.0
arr (7) = 7.0
arr (8) = 0.0
arr (9) = 9.0
Executing from numpy...
Numpy Array : ndarray (ndim=2, shape=(10, 10))
arr (0) = [0 1 1 1 1 1 1 1 1 1]
arr (1) = [1 0 1 1 1 1 1 1 1 1]
arr (2) = [1 1 0 1 1 1 1 1 1 1]
arr (3) = [1 1 1 0 1 1 1 1 1 1]
arr (4) = [1 1 1 1 0 1 1 1 1 1]
arr (5) = [1 1 1 1 1 0 1 1 1 1]
arr (6) = [1 1 1 1 1 1 0 1 1 1]
arr (7) = [1 1 1 1 1 1 1 0 1 1]
arr (8) = [1 1 1 1 1 1 1 1 0 1]
arr (9) = [1 1 1 1 1 1 1 1 1 0]
Kokkos View : KokkosDynRankView_int32_HostSpace_LayoutRight (ndim=2, shape=[10, 10, 1, 1, 1, 1, 1])
view (0) = [0 1 1 1 1 1 1 1 1 1]
view (1) = [1 0 1 1 1 1 1 1 1 1]
view (2) = [1 1 0 1 1 1 1 1 1 1]
view (3) = [1 1 1 0 1 1 1 1 1 1]
view (4) = [1 1 1 1 0 1 1 1 1 1]
view (5) = [1 1 1 1 1 0 1 1 1 1]
view (6) = [1 1 1 1 1 1 0 1 1 1]
view (7) = [1 1 1 1 1 1 1 0 1 1]
view (8) = [1 1 1 1 1 1 1 1 0 1]
view (9) = [1 1 1 1 1 1 1 1 1 0]
Executing user bindings...
Kokkos View : KokkosView_float64_HostSpace_LayoutRight_2 (ndim=2, shape=[10, 2])
view (0) = [-1.0 1.0]
view (1) = [-2.0 2.0]
view (2) = [-3.0 3.0]
view (3) = [-4.0 4.0]
view (4) = [-5.0 5.0]
view (5) = [-6.0 6.0]
view (6) = [-7.0 7.0]
view (7) = [-8.0 8.0]
view (8) = [-9.0 9.0]
view (9) = [-10.0 10.0]
Modify View : KokkosView_float64_HostSpace_LayoutRight_2 (ndim=2, shape=[10, 2])
view (0) = [-2.0 2.0]
view (1) = [-4.0 4.0]
view (2) = [-6.0 6.0]
view (3) = [-8.0 8.0]
view (4) = [-10.0 10.0]
view (5) = [-12.0 12.0]
view (6) = [-14.0 14.0]
view (7) = [-16.0 16.0]
view (8) = [-18.0 18.0]
view (9) = [-20.0 20.0]
Numpy Array : ndarray (ndim=2, shape=(10, 2))
arr (0) = [-2.0 2.0]
arr (1) = [-4.0 4.0]
arr (2) = [-6.0 6.0]
arr (3) = [-8.0 8.0]
arr (4) = [-10.0 10.0]
arr (5) = [-12.0 12.0]
arr (6) = [-14.0 14.0]
arr (7) = [-16.0 16.0]
arr (8) = [-18.0 18.0]
arr (9) = [-20.0 20.0]