You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<p><ahref="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb"><imgalt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a><ahref="https://www.comet.ml/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels"><imgalt="Open In Comet" src="https://images.labml.ai/images/comet.svg?experiment=capsule_networks&file=model"></a></p>
73
+
<p><ahref="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb"><imgalt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a><ahref="https://www.comet.com/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels?utm_source=referral&utm_medium=partner&utm_campaign=labml"><imgalt="Open In Comet" src="https://images.labml.ai/images/comet.svg?experiment=capsule_networks&file=model"></a></p>
74
74
<p>This trains a DDPM based model on CelebA HQ dataset. You can find the download instruction in this <ahref="https://forums.fast.ai/t/download-celeba-hq-dataset/45873/3">discussion on fast.ai</a>. Save the images inside <ahref="#dataset_path"><codeclass="highlight"><span></span><spanclass="n">data</span><spanclass="o">/</span><spanclass="n">celebA</span></code>
75
75
folder</a>.</p>
76
76
<p>The paper had used a exponential moving average of the model with a decay of <spanclass="katex"><spanaria-hidden="true" class="katex-html"><spanclass="base"><spanclass="strut" style="height:0.64444em;vertical-align:0em;"></span><spanclass="mord">0.9999</span></span></span></span>. We have skipped this for simplicity.</p>
<p><ahref="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb"><imgalt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a><ahref="https://www.comet.ml/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels"><imgalt="Open In Comet" src="https://images.labml.ai/images/comet.svg?experiment=capsule_networks&file=model"></a></p>
73
+
<p><ahref="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb"><imgalt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a><ahref="https://www.comet.com/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels?utm_source=referral&utm_medium=partner&utm_campaign=labml"><imgalt="Open In Comet" src="https://images.labml.ai/images/comet.svg?experiment=capsule_networks&file=model"></a></p>
74
74
<p>This is a <ahref="https://pytorch.org">PyTorch</a> implementation/tutorial of the paper <ahref="https://papers.labml.ai/paper/2006.11239">Denoising Diffusion Probabilistic Models</a>.</p>
75
75
<p>In simple terms, we get an image from data and add noise step by step. Then We train a model to predict that noise at each step and use the model to generate images.</p>
76
76
<p>The following definitions and derivations show how this works. For details please refer to <ahref="https://papers.labml.ai/paper/2006.11239">the paper</a>.</p>
<p><ahref="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb"><imgalt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a><ahref="https://www.comet.ml/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels"><imgalt="Open In Comet" src="https://images.labml.ai/images/comet.svg?experiment=capsule_networks&file=model"></a></p>
73
+
<p><ahref="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb"><imgalt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a><ahref="https://www.comet.com/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels?utm_source=referral&utm_medium=partner&utm_campaign=labml"><imgalt="Open In Comet" src="https://images.labml.ai/images/comet.svg?experiment=capsule_networks&file=model"></a></p>
74
74
<p>This is a <ahref="https://pytorch.org">PyTorch</a> implementation/tutorial of the paper <ahref="https://papers.labml.ai/paper/2006.11239">Denoising Diffusion Probabilistic Models</a>.</p>
75
75
<p>In simple terms, we get an image from data and add noise step by step. Then We train a model to predict that noise at each step and use the model to generate images.</p>
76
76
<p>Here is the <ahref="https://nn.labml.ai/diffusion/ddpm/unet.html">UNet model</a> that predicts the noise and <ahref="https://nn.labml.ai/diffusion/ddpm/experiment.html">training code</a>. <ahref="https://nn.labml.ai/diffusion/ddpm/evaluate.html">This file</a> can generate samples and interpolations from a trained model. </p>
Copy file name to clipboardExpand all lines: labml_nn/diffusion/ddpm/__init__.py
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -9,7 +9,7 @@
9
9
# Denoising Diffusion Probabilistic Models (DDPM)
10
10
11
11
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb)
12
-
[](https://www.comet.ml/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels)
12
+
[](https://www.comet.com/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels?utm_source=referral&utm_medium=partner&utm_campaign=labml)
13
13
14
14
This is a [PyTorch](https://pytorch.org) implementation/tutorial of the paper
"[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb)\n",
14
-
"[](https://www.comet.ml/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels)\n",
14
+
"[](https://www.comet.com/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels?utm_source=referral&utm_medium=partner&utm_campaign=labml)\n",
Copy file name to clipboardExpand all lines: labml_nn/diffusion/ddpm/experiment.py
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -9,7 +9,7 @@
9
9
# [Denoising Diffusion Probabilistic Models (DDPM)](index.html) training
10
10
11
11
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb)
12
-
[](https://www.comet.ml/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels)
12
+
[](https://www.comet.com/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels?utm_source=referral&utm_medium=partner&utm_campaign=labml)
13
13
14
14
This trains a DDPM based model on CelebA HQ dataset. You can find the download instruction in this
15
15
[discussion on fast.ai](https://forums.fast.ai/t/download-celeba-hq-dataset/45873/3).
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb)
4
-
[](https://www.comet.ml/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels)
4
+
[](https://www.comet.com/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels?utm_source=referral&utm_medium=partner&utm_campaign=labml)
5
5
6
6
This is a [PyTorch](https://pytorch.org) implementation/tutorial of the paper
0 commit comments