Skip to content

[Agentic Phase 5] Evaluation framework with pydantic-eval #128

@bashandbone

Description

@bashandbone

Phase 5: Evaluation Framework with pydantic-eval

Parent Epic: #123
Depends On: All prior phases (#124, #125, #126, #127)
Target: v0.3
Risk Level: Low-Medium

Implement comprehensive evaluation framework using pydantic-eval to measure agent performance, pipeline quality, and enable continuous improvement.

Goals

  • Agent performance evaluation
  • Pipeline quality metrics
  • Search result quality assessment
  • Continuous improvement infrastructure
  • A/B testing capabilities

Background

pydantic-eval provides:

  • Standardized evaluation metrics
  • Test case management
  • Performance benchmarking
  • Comparison frameworks
  • Result analysis tools

Implementation Checklist

Evaluation Framework Setup

  • Add pydantic-eval dependency
  • Create evaluation infrastructure
  • Define evaluation datasets
    • Synthetic queries with known answers
    • Real-world query samples
    • Edge case scenarios
  • Implement evaluation harness

Metrics Definition

  • Relevance metrics
    • Precision@k
    • Recall@k
    • MRR (Mean Reciprocal Rank)
    • NDCG (Normalized Discounted Cumulative Gain)
  • Agent quality metrics
    • Reasoning correctness
    • Strategy appropriateness
    • Explanation quality
  • Pipeline metrics
    • End-to-end latency
    • Cost per query
    • Success rate
    • Failure mode analysis
  • User satisfaction metrics
    • Usefulness ratings
    • Response completeness
    • Clarity of explanations

Evaluation Pipelines

  • Automated evaluation runs
    • Nightly evaluation jobs
    • Pre-release validation
    • Regression detection
  • Manual evaluation workflows
    • Human review interface
    • Annotation tools
    • Feedback collection
  • Continuous evaluation
    • Production query sampling
    • Real-time quality monitoring
    • Alert on degradation

Comparison & Analysis

  • Baseline comparisons
    • Simple search vs agent-enhanced
    • Different strategies
    • Model comparisons
  • A/B testing framework
    • Traffic splitting
    • Statistical significance
    • Winner selection
  • Regression analysis
    • Version-to-version comparison
    • Feature impact assessment
    • Performance trends

Result Tracking & Reporting

  • Evaluation database
    • Store all evaluation runs
    • Query/result pairs
    • Metrics over time
  • Dashboards
    • Quality trends
    • Performance metrics
    • Cost tracking
  • Reporting tools
    • Automated reports
    • Alerting on regressions
    • Improvement recommendations

Testing

  • Unit tests for evaluation components
  • Validation of metrics
  • Test data quality checks
  • Evaluation pipeline tests

Configuration

  • Evaluation schedules
  • Metric thresholds
  • Alert configuration
  • Dataset management
  • Sampling strategies

Success Criteria

  • Evaluation framework running regularly
  • Metrics provide actionable insights
  • Regressions detected automatically
  • A/B tests guide decisions
  • Documentation complete
  • Team trained on evaluation tools

Example Evaluation Scenarios

1. Agent Impact Assessment

Hypothesis: Agents improve search relevance
Test: Compare simple search vs agent-enhanced
Metrics: Precision@5, MRR, user satisfaction
Result: Quantified improvement or not

2. Strategy Optimization

Hypothesis: Smart strategy selection reduces latency
Test: Fixed strategy vs adaptive strategy
Metrics: Latency distribution, quality metrics
Result: Identify optimal routing rules

3. Model Comparison

Hypothesis: GPT-4 agents outperform GPT-3.5
Test: Same pipelines, different models
Metrics: Quality, cost, latency
Result: ROI analysis for model selection

4. Data Provider Value

Hypothesis: External context improves answers
Test: With vs without data providers
Metrics: Completeness, accuracy
Result: Determine which providers to use

Integration Points

Reference

Metadata

Metadata

Assignees

No one assigned

    Projects

    No projects

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions