forked from cgpotts/cs224u
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_tree_nn.py
490 lines (402 loc) · 16.4 KB
/
torch_tree_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import random
import torch
import torch.nn as nn
import torch.utils.data
from torch_model_base import TorchModelBase
import utils
__author__ = "Christopher Potts"
__version__ = "CS224u, Stanford, Spring 2021"
class TorchTreeNNModel(nn.Module):
def __init__(self,
vocab,
embed_dim,
embedding,
output_dim,
hidden_activation,
freeze_embedding=False):
"""
Defines the core computation graph for TorchTreeNN. At its heart,
this is a standard tree-structured neural network with a simple
combination function
p = f([left;right] + b)
where left and right are the representations of the child nodes, f
is an activation function, and p is the representation of the parent.
See `forward` for a decription of how it is computed with data
structures that can be batched efficiently.
"""
super().__init__()
self.vocab_size = len(vocab)
self.embed_dim = embed_dim
self.hidden_dim = embed_dim * 2
self.hidden_activation = hidden_activation
self.output_dim = output_dim
self.tree_layer = nn.Linear(self.hidden_dim, self.embed_dim)
self.freeze_embedding = freeze_embedding
self.embedding = self._define_embedding(
embedding, self.vocab_size, self.embed_dim, self.freeze_embedding)
self.classifier_layer = nn.Linear(self.embed_dim, self.output_dim)
def _define_embedding(self, embedding, vocab_size, embed_dim, freeze_embedding):
if embedding is None:
emb = nn.Embedding(vocab_size, embed_dim)
emb.weight.requires_grad = not freeze_embedding
return emb
else:
embedding = torch.FloatTensor(embedding)
return nn.Embedding.from_pretrained(
embedding, freeze=freeze_embedding)
def forward(self, subtree_batch, subtree_lens_batch, emb_ind_batch):
"""
Recursively interpret a batch of examples as formatted by
`TorchTreeNN._build_tree_rep`. Each member of `emb_ind_batch`
is a list of indices into our embedding space. We look them
all up. A subset are actually lexical representations. The rest
are modified by the intrpretatation loop. For example, the tree
A
|
------
| |
B E
|
-----
| |
C D
is represented as
emb_ind=[0, 0, i, j, k]
and
subtrees=[[2,2,2], [3,3,3], [4,4,4], [2, 3, 4] [0,1,2]].
We create the (5, embed_dim) matrix reps. The first three subtrees
are skipped, and the fourth modifies reps[2] by running
f(reps[3];reps[4]), where f is the combination function. Finally,
reps[0] is modified by processing f(reps[1];reps[2]). This mirrors
the process of bottom-up, right-to-left interpretation.
Parameters
----------
subtree_batch : torch.LongTensor
Shape (batch_size, max_batch_len, 3)
subtree_lens_batch : torch.LongTensor
Shape (batch_size, ). These are used to avoid processing
padded elements of members of `subtree_batch`.
emb_ind_batch : torch.LongTensor
Shape (batch_size, max_batch_len)
Returns
-------
torch.FloatTensor
Shape (batch_size, embed_dim).
"""
logits = []
iterator = zip(subtree_batch, subtree_lens_batch, emb_ind_batch)
for subtrees, subtree_len, emb_inds in iterator:
reps = self.embedding(emb_inds)
for i in range(subtree_len):
parent, left, right = subtrees[i]
# Skip the lexical subtrees; we don't actually want to
# change them as though they were local trees.
if left != right:
combined = torch.cat((reps[left], reps[right]), dim=0)
root_rep = self.hidden_activation(
self.tree_layer(combined))
reps[parent] = root_rep
root = reps[0]
logits.append(self.classifier_layer(root))
logits = torch.stack(logits)
return logits
class TorchTreeNN(TorchModelBase):
def __init__(self,
vocab,
embedding=None,
embed_dim=50,
hidden_activation=nn.Tanh(),
freeze_embedding=False,
**base_kwargs):
"""
Tree-structured Neural Network for classification problems.
The network will work for any kind of classification task.
Parameters
----------
vocab : list of str
This should be the vocabulary. It needs to be aligned with
`embedding` in the sense that the ith element of vocab
should be represented by the ith row of `embedding`. Ignored
if `use_embedding=False`.
embedding : np.array or None
Each row represents a word in `vocab`, as described above.
embed_dim : int
Dimensionality for the initial embeddings. This is ignored
if `embedding` is not None, as a specified value there
determines this value. Also ignored if `use_embedding=False`.
hidden_activation : nn.Module
The non-activation function used by the network for the
hidden layer. Default `nn.Tanh()`.
freeze_embedding : bool
If True, the embedding will be updated during training. If
False, the embedding will be frozen. This parameter applies
to both randomly initialized and pretrained embeddings.
**base_kwargs
For details, see `torch_model_base.py`.
Attributes
----------
vocab_size : int
vocab_lookup : dict
Look-up from vocab items to indices.
loss: nn.CrossEntropyLoss(reduction="mean")
self.params: list
Extends TorchModelBase.params with names for all of the
arguments for this class to support tuning of these values
using `sklearn.model_selection` tools.
"""
self.vocab = vocab
self.embedding = embedding
self.embed_dim = embed_dim
if self.embedding is not None:
self.embed_dim = embedding.shape[1]
self.hidden_activation = hidden_activation
self.freeze_embedding = freeze_embedding
super().__init__(**base_kwargs)
self.params += [
'embed_dim',
'embedding',
'hidden_activation',
'freeze_embedding']
self.vocab = vocab
self.vocab_size = len(vocab)
self.vocab_lookup = dict(zip(self.vocab, range(self.vocab_size)))
self.loss = nn.CrossEntropyLoss()
def build_graph(self):
"""
The core computation graph. This is called by `fit`, which sets
the `self.model` attribute.
Returns
-------
TorchTreeNNModel
"""
model = TorchTreeNNModel(
vocab=self.vocab,
embedding=self.embedding,
embed_dim=self.embed_dim,
output_dim=self.n_classes_,
hidden_activation=self.hidden_activation,
freeze_embedding=self.freeze_embedding)
self.embed_dim = model.embed_dim
return model
def build_dataset(self, trees, y=None):
"""
Format data for training and prediction. This is somewhat
involved. See `self._build_tree_rep` for a description of the
core logic.
Parameters
----------
trees : list of nltk.Tree instances
Returns
-------
torch.utils.data.TensorDataset
"""
all_subtree_indices = []
all_emb_indices = []
all_subtree_lens = []
for tree in trees:
subtree, emb = self._tree2tensors(tree)
all_subtree_indices.append(subtree)
all_subtree_lens.append(len(subtree))
all_emb_indices.append(emb)
all_subtree_indices = torch.nn.utils.rnn.pad_sequence(
all_subtree_indices, batch_first=True)
all_emb_indices = torch.nn.utils.rnn.pad_sequence(
all_emb_indices, batch_first=True)
all_subtree_lens = torch.tensor(all_subtree_lens)
if y is None:
return torch.utils.data.TensorDataset(
all_subtree_indices, all_subtree_lens, all_emb_indices)
else:
self.classes_ = sorted(set(y))
self.n_classes_ = len(self.classes_)
self.class2index = dict(zip(self.classes_, range(self.n_classes_)))
y = [self.class2index[x] for x in y]
y = torch.tensor(y)
return torch.utils.data.TensorDataset(
all_subtree_indices, all_subtree_lens, all_emb_indices, y)
def _tree2tensors(self, tree):
subtree_indices, emb_indices, _ = self._build_tree_rep(tree)
# Reverse the order so that the tree is interpreted bottom up
# and right to left:
subtree_indices = torch.tensor(subtree_indices[::-1])
emb_indices = torch.tensor(emb_indices)
return subtree_indices, emb_indices
def _build_tree_rep(self, tree, n=0):
"""Turns an nltk.Tree `tree` into a list of subtree indices
and a list of embedding indices for terminal nodes (and False
for non-terminal nodes). For example, the tree
A
-----
| |
B C
becomes the list of subtrees [[0, 1, 2], [1, 1, 1], [2, 2, 2]]
and the list of lexical signals [False, N, M], where N and M
are the embedding indices for B and C according to
`vocab_lookup`.
Lexical items are signaled with triples [N, N, N]. The intention
is that these will be skipped by the model that interprets
these trees. They are included only so that even simple trees
like
A
|
B
will have non-empty lists of subtrees.
The algorithm does a left-to-right, depth-first traversal. Here
is what that looks like in terms of indices:
0
|
----------
1 4
| |
----- -----
2 3 5 6
|
-----
| |
7 8
and the above tree then creates the list of subtrees
[[0, 1, 4],
[1, 2, 3],
[2, 2, 2],
[3, 3, 3],
[4, 5, 6],
[5, 5, 5],
[6, 7, 8],
[7, 7, 7],
[8, 8, 8]]
Parameters
----------
tree : nltk.Tree
vocab_lookup : dict
Should map terminal nodes to embedding indices, and
needs to include a key `$UNK` to handle unseen words.
n : int
Used when the function is called recursively.
Returns
-------
subtree_indices: list of length-3 lists of node indices
emb_index: list of int and False
n: current node index
"""
if isinstance(tree, str):
# For lexical items, we create dummy local trees and skip
# them during interpretation. This ensures that even
# single-node trees have non-empty subtree sequences which
# is important for padding and batching.
subtree_indices = [[n, n, n]]
emb_index = self.vocab_lookup.get(tree[0], self.vocab_lookup['$UNK'])
emb_index = [emb_index]
return subtree_indices, emb_index, n
elif len(tree) == 1:
return self._build_tree_rep(tree[0], n=n)
else:
subtree_indices = [n]
emb_indices = [False] # Used for non-lexical nodes.
# Add the left child index:
subtree_indices.append(n+1)
# Now go recursively into the left daughter.
l_ind, l_emb, n = self._build_tree_rep(tree[0], n=n+1)
# Add the right child index:
subtree_indices.append(n+1)
# Now go recursively into the right daughter:
r_ind, r_emb, n = self._build_tree_rep(tree[1], n=n+1)
# Combine all of the info:
subtree_indices = [subtree_indices] + l_ind + r_ind
emb_indices += l_emb + r_emb
return subtree_indices, emb_indices, n
def predict_proba(self, X, device=None):
"""Predicted probabilities for the examples in `X`.
Parameters
----------
X : list of nltk.tree.Tree
device: str or None
Allows the user to temporarily change the device used
during prediction. This is useful if predictions require a
lot of memory and so are better done on the CPU. After
prediction is done, the model is returned to `self.device`.
Returns
-------
np.array with shape (len(X), self.n_classes_)
"""
preds = self._predict(X, device=device)
probs = torch.softmax(preds, dim=1).cpu().numpy()
return probs
def predict(self, X, device=None):
"""Predicted labels for the examples in `X`. These are converted
from the integers that PyTorch needs back to their original
values in `self.classes_`.
Parameters
----------
X : list of nltk.tree.Tree
device: str or None
Allows the user to temporarily change the device used
during prediction. This is useful if predictions require a
lot of memory and so are better done on the CPU. After
prediction is done, the model is returned to `self.device`.
Returns
-------
list of length len(X)
"""
probs = self.predict_proba(X, device=device)
return [self.classes_[i] for i in probs.argmax(axis=1)]
def score(self, X, y, device=None):
"""
Uses macro-F1 as the score function. Note: this departs from
`sklearn`, where classifiers use accuracy as their scoring
function. Using macro-F1 is more consistent with our course.
This function can be used to evaluate models, but its primary
use is in cross-validation and hyperparameter tuning.
Parameters
----------
X : list of nltk.Tree instances
y : iterable, shape `len(n_examples)`
These can be the raw labels. They will converted internally
as needed. See `build_dataset`.
device: str or None
Allows the user to temporarily change the device used
during prediction. This is useful if predictions require a
lot of memory and so are better done on the CPU. After
prediction is done, the model is returned to `self.device`.
Returns
-------
float
"""
preds = self.predict(X, device=device)
return utils.safe_macro_f1(y, preds)
def simple_example():
from nltk.tree import Tree
utils.fix_random_seeds()
train = [
"(odd 1)",
"(even 2)",
"(even (odd 1) (neutral (neutral +) (odd 1)))",
"(odd (odd 1) (neutral (neutral +) (even 2)))",
"(odd (even 2) (neutral (neutral +) (odd 1)))",
"(even (even 2) (neutral (neutral +) (even 2)))",
"(even (odd 1) (neutral (neutral +) (odd (odd 1) (neutral (neutral +) (even 2)))))"]
test = [
"(odd (odd 1))",
"(even (even 2))",
"(odd (odd 1) (neutral (neutral +) (even (odd 1) (neutral (neutral +) (odd 1)))))",
"(even (even 2) (neutral (neutral +) (even (even 2) (neutral (neutral +) (even 2)))))",
"(odd (even 2) (neutral (neutral +) (odd (even 2) (neutral (neutral +) (odd 1)))))",
"(even (odd 1) (neutral (neutral +) (odd (even 2) (neutral (neutral +) (odd 1)))))",
"(odd (even 2) (neutral (neutral +) (odd (odd 1) (neutral (neutral +) (even 2)))))"]
vocab = ["1", "+", "2", "$UNK"]
X_train = [Tree.fromstring(x) for x in train]
y_train = [t.label() for t in X_train]
X_test = [Tree.fromstring(x) for x in test]
y_test = [t.label() for t in X_test]
mod = TorchTreeNN(vocab)
print(mod)
mod.fit(X_train, y_train)
print("\nTest predictions:")
preds = mod.predict(X_test)
correct = 0
for tree, label, pred in zip(X_test, y_test, preds):
correct += int(correct == label)
print("{}\n\tPredicted: {}\n\tActual: {}".format(tree, pred, label))
print("{}/{} correct".format(correct, len(X_test)))
return mod.score(X_test, y_test)
if __name__ == '__main__':
simple_example()