-
Notifications
You must be signed in to change notification settings - Fork 18
/
fftformer_arch.py
297 lines (208 loc) · 10.4 KB
/
fftformer_arch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import torch
import torch.nn as nn
import torch.nn.functional as F
import numbers
from einops import rearrange
def to_3d(x):
return rearrange(x, 'b c h w -> b (h w) c')
def to_4d(x, h, w):
return rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
class BiasFree_LayerNorm(nn.Module):
def __init__(self, normalized_shape):
super(BiasFree_LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
assert len(normalized_shape) == 1
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.normalized_shape = normalized_shape
def forward(self, x):
sigma = x.var(-1, keepdim=True, unbiased=False)
return x / torch.sqrt(sigma + 1e-5) * self.weight
class WithBias_LayerNorm(nn.Module):
def __init__(self, normalized_shape):
super(WithBias_LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
assert len(normalized_shape) == 1
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.normalized_shape = normalized_shape
def forward(self, x):
mu = x.mean(-1, keepdim=True)
sigma = x.var(-1, keepdim=True, unbiased=False)
return (x - mu) / torch.sqrt(sigma + 1e-5) * self.weight + self.bias
class LayerNorm(nn.Module):
def __init__(self, dim, LayerNorm_type):
super(LayerNorm, self).__init__()
if LayerNorm_type == 'BiasFree':
self.body = BiasFree_LayerNorm(dim)
else:
self.body = WithBias_LayerNorm(dim)
def forward(self, x):
h, w = x.shape[-2:]
return to_4d(self.body(to_3d(x)), h, w)
class DFFN(nn.Module):
def __init__(self, dim, ffn_expansion_factor, bias):
super(DFFN, self).__init__()
hidden_features = int(dim * ffn_expansion_factor)
self.patch_size = 8
self.dim = dim
self.project_in = nn.Conv2d(dim, hidden_features * 2, kernel_size=1, bias=bias)
self.dwconv = nn.Conv2d(hidden_features * 2, hidden_features * 2, kernel_size=3, stride=1, padding=1,
groups=hidden_features * 2, bias=bias)
self.fft = nn.Parameter(torch.ones((hidden_features * 2, 1, 1, self.patch_size, self.patch_size // 2 + 1)))
self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)
def forward(self, x):
x = self.project_in(x)
x_patch = rearrange(x, 'b c (h patch1) (w patch2) -> b c h w patch1 patch2', patch1=self.patch_size,
patch2=self.patch_size)
x_patch_fft = torch.fft.rfft2(x_patch.float())
x_patch_fft = x_patch_fft * self.fft
x_patch = torch.fft.irfft2(x_patch_fft, s=(self.patch_size, self.patch_size))
x = rearrange(x_patch, 'b c h w patch1 patch2 -> b c (h patch1) (w patch2)', patch1=self.patch_size,
patch2=self.patch_size)
x1, x2 = self.dwconv(x).chunk(2, dim=1)
x = F.gelu(x1) * x2
x = self.project_out(x)
return x
class FSAS(nn.Module):
def __init__(self, dim, bias):
super(FSAS, self).__init__()
self.to_hidden = nn.Conv2d(dim, dim * 6, kernel_size=1, bias=bias)
self.to_hidden_dw = nn.Conv2d(dim * 6, dim * 6, kernel_size=3, stride=1, padding=1, groups=dim * 6, bias=bias)
self.project_out = nn.Conv2d(dim * 2, dim, kernel_size=1, bias=bias)
self.norm = LayerNorm(dim * 2, LayerNorm_type='WithBias')
self.patch_size = 8
def forward(self, x):
hidden = self.to_hidden(x)
q, k, v = self.to_hidden_dw(hidden).chunk(3, dim=1)
q_patch = rearrange(q, 'b c (h patch1) (w patch2) -> b c h w patch1 patch2', patch1=self.patch_size,
patch2=self.patch_size)
k_patch = rearrange(k, 'b c (h patch1) (w patch2) -> b c h w patch1 patch2', patch1=self.patch_size,
patch2=self.patch_size)
q_fft = torch.fft.rfft2(q_patch.float())
k_fft = torch.fft.rfft2(k_patch.float())
out = q_fft * k_fft
out = torch.fft.irfft2(out, s=(self.patch_size, self.patch_size))
out = rearrange(out, 'b c h w patch1 patch2 -> b c (h patch1) (w patch2)', patch1=self.patch_size,
patch2=self.patch_size)
out = self.norm(out)
output = v * out
output = self.project_out(output)
return output
##########################################################################
class TransformerBlock(nn.Module):
def __init__(self, dim, ffn_expansion_factor=2.66, bias=False, LayerNorm_type='WithBias', att=False):
super(TransformerBlock, self).__init__()
self.att = att
if self.att:
self.norm1 = LayerNorm(dim, LayerNorm_type)
self.attn = FSAS(dim, bias)
self.norm2 = LayerNorm(dim, LayerNorm_type)
self.ffn = DFFN(dim, ffn_expansion_factor, bias)
def forward(self, x):
if self.att:
x = x + self.attn(self.norm1(x))
x = x + self.ffn(self.norm2(x))
return x
class Fuse(nn.Module):
def __init__(self, n_feat):
super(Fuse, self).__init__()
self.n_feat = n_feat
self.att_channel = TransformerBlock(dim=n_feat * 2)
self.conv = nn.Conv2d(n_feat * 2, n_feat * 2, 1, 1, 0)
self.conv2 = nn.Conv2d(n_feat * 2, n_feat * 2, 1, 1, 0)
def forward(self, enc, dnc):
x = self.conv(torch.cat((enc, dnc), dim=1))
x = self.att_channel(x)
x = self.conv2(x)
e, d = torch.split(x, [self.n_feat, self.n_feat], dim=1)
output = e + d
return output
##########################################################################
## Overlapped image patch embedding with 3x3 Conv
class OverlapPatchEmbed(nn.Module):
def __init__(self, in_c=3, embed_dim=48, bias=False):
super(OverlapPatchEmbed, self).__init__()
self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=3, stride=1, padding=1, bias=bias)
def forward(self, x):
x = self.proj(x)
return x
##########################################################################
## Resizing modules
class Downsample(nn.Module):
def __init__(self, n_feat):
super(Downsample, self).__init__()
self.body = nn.Sequential(nn.Upsample(scale_factor=0.5, mode='bilinear', align_corners=False),
nn.Conv2d(n_feat, n_feat * 2, 3, stride=1, padding=1, bias=False))
def forward(self, x):
return self.body(x)
class Upsample(nn.Module):
def __init__(self, n_feat):
super(Upsample, self).__init__()
self.body = nn.Sequential(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2d(n_feat, n_feat // 2, 3, stride=1, padding=1, bias=False))
def forward(self, x):
return self.body(x)
##########################################################################
##---------- FFTformer -----------------------
class fftformer(nn.Module):
def __init__(self,
inp_channels=3,
out_channels=3,
dim=48,
num_blocks=[6, 6, 12, 8],
num_refinement_blocks=4,
ffn_expansion_factor=3,
bias=False,
):
super(fftformer, self).__init__()
self.patch_embed = OverlapPatchEmbed(inp_channels, dim)
self.encoder_level1 = nn.Sequential(*[
TransformerBlock(dim=dim, ffn_expansion_factor=ffn_expansion_factor, bias=bias) for i in
range(num_blocks[0])])
self.down1_2 = Downsample(dim)
self.encoder_level2 = nn.Sequential(*[
TransformerBlock(dim=int(dim * 2 ** 1), ffn_expansion_factor=ffn_expansion_factor,
bias=bias) for i in range(num_blocks[1])])
self.down2_3 = Downsample(int(dim * 2 ** 1))
self.encoder_level3 = nn.Sequential(*[
TransformerBlock(dim=int(dim * 2 ** 2), ffn_expansion_factor=ffn_expansion_factor,
bias=bias) for i in range(num_blocks[2])])
self.decoder_level3 = nn.Sequential(*[
TransformerBlock(dim=int(dim * 2 ** 2), ffn_expansion_factor=ffn_expansion_factor,
bias=bias, att=True) for i in range(num_blocks[2])])
self.up3_2 = Upsample(int(dim * 2 ** 2))
self.reduce_chan_level2 = nn.Conv2d(int(dim * 2 ** 2), int(dim * 2 ** 1), kernel_size=1, bias=bias)
self.decoder_level2 = nn.Sequential(*[
TransformerBlock(dim=int(dim * 2 ** 1), ffn_expansion_factor=ffn_expansion_factor,
bias=bias, att=True) for i in range(num_blocks[1])])
self.up2_1 = Upsample(int(dim * 2 ** 1))
self.decoder_level1 = nn.Sequential(*[
TransformerBlock(dim=int(dim), ffn_expansion_factor=ffn_expansion_factor,
bias=bias, att=True) for i in range(num_blocks[0])])
self.refinement = nn.Sequential(*[
TransformerBlock(dim=int(dim), ffn_expansion_factor=ffn_expansion_factor,
bias=bias, att=True) for i in range(num_refinement_blocks)])
self.fuse2 = Fuse(dim * 2)
self.fuse1 = Fuse(dim)
self.output = nn.Conv2d(int(dim), out_channels, kernel_size=3, stride=1, padding=1, bias=bias)
def forward(self, inp_img):
inp_enc_level1 = self.patch_embed(inp_img)
out_enc_level1 = self.encoder_level1(inp_enc_level1)
inp_enc_level2 = self.down1_2(out_enc_level1)
out_enc_level2 = self.encoder_level2(inp_enc_level2)
inp_enc_level3 = self.down2_3(out_enc_level2)
out_enc_level3 = self.encoder_level3(inp_enc_level3)
out_dec_level3 = self.decoder_level3(out_enc_level3)
inp_dec_level2 = self.up3_2(out_dec_level3)
inp_dec_level2 = self.fuse2(inp_dec_level2, out_enc_level2)
out_dec_level2 = self.decoder_level2(inp_dec_level2)
inp_dec_level1 = self.up2_1(out_dec_level2)
inp_dec_level1 = self.fuse1(inp_dec_level1, out_enc_level1)
out_dec_level1 = self.decoder_level1(inp_dec_level1)
out_dec_level1 = self.refinement(out_dec_level1)
out_dec_level1 = self.output(out_dec_level1) + inp_img
return out_dec_level1