-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft.py
84 lines (61 loc) · 2.18 KB
/
fft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from evaluator import ArithmeticsEvaluator
from args import TrainingArguments, DataTrainingArguments, ArgumentParser
from tasks import Preprocessor
import torch
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
Seq2SeqTrainer,
GenerationConfig,
default_data_collator,
)
import wandb
import os
def compute_metrics(eval_preds):
tokenizer = AutoTokenizer.from_pretrained(
"t5-base", model_max_length=512, use_fast=True
)
preds, labels = eval_preds
# print(tokenizer.pad_token_id)
preds[preds == -100] = tokenizer.pad_token_id
labels[labels == -100] = tokenizer.pad_token_id
# print(preds, labels)
preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
# print(preds, labels)
correct = 0
total = 0
for pred, true in zip(preds, labels):
if pred.strip() == true.strip():
correct += 1
total += 1
accuracy = correct / total
return {"accuracy": accuracy}
parser = ArgumentParser((TrainingArguments, DataTrainingArguments))
training_args, data_args = parser.parse_toml_file("configs/fft_qnli_mnli.toml")
print(training_args.device)
os.environ["WANDB_PROJECT"] = training_args.wandb_project
tokenizer = AutoTokenizer.from_pretrained(
data_args.data_tokenizer_name_or_path, model_max_length=512, use_fast=True
)
model = AutoModelForSeq2SeqLM.from_pretrained(training_args.model_name_or_path)
model.resize_token_embeddings(len(tokenizer))
preprocessor = Preprocessor(["mnli", "qnli"], data_args, training_args)
train_dataset, valid_datasets, test_datasets = preprocessor.get_data()
trainer = Seq2SeqTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_datasets,
data_collator=default_data_collator,
compute_metrics=compute_metrics,
)
trainer.train()
for td in test_datasets:
trainer.evaluate(eval_dataset=test_datasets[td], metric_key_prefix="test")
if wandb.run is not None:
wandb.finish()
model.save_pretrained("./mnli_qnli")