MONET: Modality-Embracing Graph Convolutional Network and Target-Aware Attention for Multimedia Recommendation
This repository provides a reference implementation of MONET as described in the following paper:
MONET: Modality-Embracing Graph Convolutional Network and Target-Aware Attention for Multimedia Recommendation
Yungi Kim, Taeri Kim, Won-Yong Shin and Sang-Wook Kim
17th ACM Int'l Conf. on Web Search and Data Mining (ACM WSDM 2024)
- Yungi Kim (gozj3319@hanyang.ac.kr)
- Taeri Kim (taerik@hanyang.ac.kr)
- Won-Yong Shin (wy.shin@yonsei.ac.kr)
- Sang-Wook Kim (wook@hanyang.ac.kr)
The code has been tested running under Python 3.6.13. The required packages are as follows:
gensim==3.8.3
pytorch==1.10.2+cu113
torch_geometric==2.0.3
sentence_transformers==2.2.0
pandas
numpy
tqdm
torch-scatter
torch-sparse
torch-cluster
torch-spline-conv
torch-geometric
Men Clothing and Women Clothing: Download Amazon product dataset provided by MAML. Put data folder into the directory data/.
Beauty and Toys & Games: Download 5-core reviews data, meta data, and image features from Amazon product dataset. Put data into the directory data/{folder}/meta-data/.
Run python build_data.py --name={Dataset}
- For MONET in RQ1,
python main.py --agg=concat --n_layers=2 --alpha=1.0 --beta=0.3 --dataset=WomenClothing --model_name=MONET_2_10_3
- For RQ2, refer the second cell in "Preliminaries.ipynb".
- For MONET_w/o_MeGCN and MONET_w/o_TA in RQ3,
python main.py --agg=concat --n_layers=0 --alpha=1.0 --beta=0.3 --dataset=WomenClothing --model_name=MONET_wo_MeGCN
python main.py --target_aware --agg=concat --n_layers=2 --alpha=1.0 --beta=0.3 --dataset=WomenClothing --model_name=MONET_wo_TA
- For RQ4 (hyperparameters
$\alpha$ ,$\beta$ sensitivity),
python main.py --agg=concat --n_layers=2 --alpha={value} --beta=0.3 --dataset=WomenClothing --model_name=MONET_2_{alpha}_3
python main.py --agg=concat --n_layers=2 --alpha=1.0 --beta={value} --dataset=WomenClothing --model_name=MONET_2_10_{beta}
We encourage you to cite our paper if you have used the code in your work. You can use the following BibTex citation:
@inproceedings{kim24wsdm,
author = {Yungi Kim and Taeri Kim and Won{-}Yong Shin and Sang{-}Wook Kim},
title = {MONET: Modality-Embracing Graph Convolutional Network and Target-Aware Attention for Multimedia Recommendation},
booktitle = {ACM International Conference on Web Search and Data Mining (ACM WSDM 2024)},
year = {2024}
}
The structure of this code is largely based on LATTICE. Thank for their work.