forked from EZ4BYG/Func_Opt
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSimulated_Annealing_Gradient_Descent_Schaffer.m
113 lines (108 loc) · 3.27 KB
/
Simulated_Annealing_Gradient_Descent_Schaffer.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
% 模拟退火感觉不好用!Rastrigin的小坑太多了!
% 这里必须要暴力、超大量搜索才能不断跳出一个个坑!
% 这个要想搜到精确解,真的是看运气!!
clc;
clear;
syms x y;
% 根据函数表达式: f最小值是0
f = 0.5 + ( (sin(x^2+y^2))^2 - 0.5 ) / ( 1+0.01*(x^2+y^2) )^2;
% 一阶导数: 为精搜的梯度下降准备
fx = diff(f,x);
fy = diff(f,y);
% 原始图像:
x = -5:0.01:5;
y = -5:0.01:5;
[X,Y] = meshgrid(x,y);
Z = 0.5 + ( (sin(sqrt(X.^2+Y.^2))).^2 - 0.5 ) ./ ( 1+0.01*(X.^2+Y.^2) ).^2;
figure(1);
mesh(X,Y,Z);
xlabel('横坐标x'); ylabel('纵坐标y'); zlabel('空间坐标z');
hold on;
x0 = 1.29;
y0 = -4.62;
f_min = 0.5 + ( (sin(sqrt(x0^2+y0^2)))^2 - 0.5 ) / ( 1+0.01*(x0^2+y0^2) )^2;
plot3(x0,y0,f_min,'b*');
hold on;
% 起始点:
% 希望范围还是: x∈[-20,0.1,20] y∈[-15,0,1,15]
x = 2.42;
y = -4.58;
f_min = eval(f);
fprintf('已知:精确极小值坐标(0.0,0.0,0.0)\n')
fprintf('模拟退火开始:\n')
num = 2000; % 每个温度下迭代次数
T_max = 500; % 初始最大温度30000
T_min = 0.001; % 结尾最小温度0.01
Trate = 0.95; % 温度下降速率0.95
n = 0;
re_heat = 2; % 重升温机制
global_min = 0; % 记录出现点的最小值!
while T_max > T_min
T_max = T_max*Trate;
%fprintf('当前温度:%.5f\n',T_max);
while n < num
x_tmp = x + round(rand,1)*round(rand()-0.5,2);
y_tmp = y + round(rand,1)*round(rand()-0.5,2);
if (x_tmp > -5 && x_tmp < 5) && (y_tmp > -5 && y_tmp < 5)
f_tmp = 0.5 + ( (sin(x_tmp^2+y_tmp^2))^2 - 0.5 ) / ( 1+0.01*(x_tmp^2+y_tmp^2) )^2;
res = f_tmp - f_min;
% 真实点: 找到更小的值当然得更新!
if res < 0
f_min = f_tmp;
global_min = f_min; % 这里肯定是越来越小的!
x = x_tmp;
y = y_tmp;
plot3(x,y,f_min,'r*');
hold on
else
% 加一个记忆功能:
if T_max < 30 && global_min < f_tmp
continue;
end
% 概率点: 没找到更小的值,看概率
p = exp(-res/T_max);
if rand() < p
f_min = f_tmp;
x = x_tmp;
y = y_tmp;
plot3(x,y,f_min,'w*');
hold on;
end
end
end
n = n + 1;
end
% 重升温
if T_max < 100 && re_heat > 0
fprintf('温度小于50,重升温!\n')
T_max = T_max + 100;
re_heat = re_heat - 1;
end
end
fprintf('近似极小值坐标为:(%.5f,%.5f,%.5f)\n', x, y, f_min);
% 下面开始梯度下降精确搜索:
% 初始化:
acc = 0.0001; % 精度
study_step = 0.001; % 学习率
k = 0; % 下降次数
% 梯度下降开始:[x1,y1] = [x0,y0] - step*( fx(x0,y0),fy(x0,y0) )
% 图像:在一个坡的两侧,跳跃式下降!
fprintf('梯度下降精确搜索开始:\n');
while eval(fx)~=0 | eval(fy)~=0
ans_tmp = [x,y] - study_step*[eval(fx),eval(fy)];
acc_tmp = sqrt((ans_tmp(1)-x)^2 + (ans_tmp(2)-y)^2);
if acc_tmp <= acc | k >= 5000
fprintf('精确极值坐标为:(%.5f,%.5f,%.5f)\n',ans_tmp(1),ans_tmp(2),f_tmp);
fprintf('迭代次数:%d\n',k);
plot3(ans_tmp(1),ans_tmp(2),f_tmp,'k.');
hold off
break;
end
x = ans_tmp(1);
y = ans_tmp(2);
f_tmp = eval(f);
plot3(x,y,f_tmp,'k.')
hold on;
k = k + 1; % 计数器
end
global_min