Skip to content

Commit

Permalink
simple context windows with freenoise shuffling
Browse files Browse the repository at this point in the history
  • Loading branch information
kijai committed Dec 19, 2024
1 parent ec0fdf1 commit b6c1705
Show file tree
Hide file tree
Showing 4 changed files with 409 additions and 111 deletions.
184 changes: 184 additions & 0 deletions context.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
import numpy as np
from typing import Callable, Optional, List


def ordered_halving(val):
bin_str = f"{val:064b}"
bin_flip = bin_str[::-1]
as_int = int(bin_flip, 2)

return as_int / (1 << 64)

def does_window_roll_over(window: list[int], num_frames: int) -> tuple[bool, int]:
prev_val = -1
for i, val in enumerate(window):
val = val % num_frames
if val < prev_val:
return True, i
prev_val = val
return False, -1

def shift_window_to_start(window: list[int], num_frames: int):
start_val = window[0]
for i in range(len(window)):
# 1) subtract each element by start_val to move vals relative to the start of all frames
# 2) add num_frames and take modulus to get adjusted vals
window[i] = ((window[i] - start_val) + num_frames) % num_frames

def shift_window_to_end(window: list[int], num_frames: int):
# 1) shift window to start
shift_window_to_start(window, num_frames)
end_val = window[-1]
end_delta = num_frames - end_val - 1
for i in range(len(window)):
# 2) add end_delta to each val to slide windows to end
window[i] = window[i] + end_delta

def get_missing_indexes(windows: list[list[int]], num_frames: int) -> list[int]:
all_indexes = list(range(num_frames))
for w in windows:
for val in w:
try:
all_indexes.remove(val)
except ValueError:
pass
return all_indexes

def uniform_looped(
step: int = ...,
num_steps: Optional[int] = None,
num_frames: int = ...,
context_size: Optional[int] = None,
context_stride: int = 3,
context_overlap: int = 4,
closed_loop: bool = True,
):
if num_frames <= context_size:
yield list(range(num_frames))
return

context_stride = min(context_stride, int(np.ceil(np.log2(num_frames / context_size))) + 1)

for context_step in 1 << np.arange(context_stride):
pad = int(round(num_frames * ordered_halving(step)))
for j in range(
int(ordered_halving(step) * context_step) + pad,
num_frames + pad + (0 if closed_loop else -context_overlap),
(context_size * context_step - context_overlap),
):
yield [e % num_frames for e in range(j, j + context_size * context_step, context_step)]

#from AnimateDiff-Evolved by Kosinkadink (https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved)
def uniform_standard(
step: int = ...,
num_steps: Optional[int] = None,
num_frames: int = ...,
context_size: Optional[int] = None,
context_stride: int = 3,
context_overlap: int = 4,
closed_loop: bool = True,
):
windows = []
if num_frames <= context_size:
windows.append(list(range(num_frames)))
return windows

context_stride = min(context_stride, int(np.ceil(np.log2(num_frames / context_size))) + 1)

for context_step in 1 << np.arange(context_stride):
pad = int(round(num_frames * ordered_halving(step)))
for j in range(
int(ordered_halving(step) * context_step) + pad,
num_frames + pad + (0 if closed_loop else -context_overlap),
(context_size * context_step - context_overlap),
):
windows.append([e % num_frames for e in range(j, j + context_size * context_step, context_step)])

# now that windows are created, shift any windows that loop, and delete duplicate windows
delete_idxs = []
win_i = 0
while win_i < len(windows):
# if window is rolls over itself, need to shift it
is_roll, roll_idx = does_window_roll_over(windows[win_i], num_frames)
if is_roll:
roll_val = windows[win_i][roll_idx] # roll_val might not be 0 for windows of higher strides
shift_window_to_end(windows[win_i], num_frames=num_frames)
# check if next window (cyclical) is missing roll_val
if roll_val not in windows[(win_i+1) % len(windows)]:
# need to insert new window here - just insert window starting at roll_val
windows.insert(win_i+1, list(range(roll_val, roll_val + context_size)))
# delete window if it's not unique
for pre_i in range(0, win_i):
if windows[win_i] == windows[pre_i]:
delete_idxs.append(win_i)
break
win_i += 1

# reverse delete_idxs so that they will be deleted in an order that doesn't break idx correlation
delete_idxs.reverse()
for i in delete_idxs:
windows.pop(i)
return windows

def static_standard(
step: int = ...,
num_steps: Optional[int] = None,
num_frames: int = ...,
context_size: Optional[int] = None,
context_stride: int = 3,
context_overlap: int = 4,
closed_loop: bool = True,
):
windows = []
if num_frames <= context_size:
windows.append(list(range(num_frames)))
return windows
# always return the same set of windows
delta = context_size - context_overlap
for start_idx in range(0, num_frames, delta):
# if past the end of frames, move start_idx back to allow same context_length
ending = start_idx + context_size
if ending >= num_frames:
final_delta = ending - num_frames
final_start_idx = start_idx - final_delta
windows.append(list(range(final_start_idx, final_start_idx + context_size)))
break
windows.append(list(range(start_idx, start_idx + context_size)))
return windows

def get_context_scheduler(name: str) -> Callable:
if name == "uniform_looped":
return uniform_looped
elif name == "uniform_standard":
return uniform_standard
elif name == "static_standard":
return static_standard
else:
raise ValueError(f"Unknown context_overlap policy {name}")


def get_total_steps(
scheduler,
timesteps: List[int],
num_steps: Optional[int] = None,
num_frames: int = ...,
context_size: Optional[int] = None,
context_stride: int = 3,
context_overlap: int = 4,
closed_loop: bool = True,
):
return sum(
len(
list(
scheduler(
i,
num_steps,
num_frames,
context_size,
context_stride,
context_overlap,
)
)
)
for i in range(len(timesteps))
)
Loading

0 comments on commit b6c1705

Please sign in to comment.