diff --git a/The-Art-of-Linear-Algebra-j.pdf b/The-Art-of-Linear-Algebra-j.pdf index 2246b40..901d421 100644 Binary files a/The-Art-of-Linear-Algebra-j.pdf and b/The-Art-of-Linear-Algebra-j.pdf differ diff --git a/The-Art-of-Linear-Algebra-j.tex b/The-Art-of-Linear-Algebra-j.tex index b0711cb..d23a5f3 100644 --- a/The-Art-of-Linear-Algebra-j.tex +++ b/The-Art-of-Linear-Algebra-j.tex @@ -268,6 +268,8 @@ \section{実用的なパターン} 行列の分解については次の節でより詳しく解説する. +\clearpage + \section{5つの行列分解} \begin{itemize} @@ -424,13 +426,12 @@ \subsection{$\boldsymbol{A=QR}$} このプロセスを順に続けていく. \begin{align*} - \bm{q}_1 &= \bm{a}_1/|\bm{a}_1| \\ - \bm{q}_2 &= \bm{a}_2 - (\bm{q}_1\transp \bm{a}_2)\bm{q}_1 , \quad \bm{q}_2 = \bm{q}_2/|\bm{q}_2| \\ - \bm{q}_3 &= \bm{a}_3 - (\bm{q}_1\transp \bm{a}_3)\bm{q}_1 - (\bm{q}_2\transp \bm{a}_3)\bm{q}_2, \quad \bm{q}_3 = \bm{q}_3/|\bm{q}_3| + \bm{q}_1 &= \bm{a}_1/||\bm{a}_1|| \\ + \bm{q}_2 &= \bm{a}_2 - (\bm{q}_1\transp \bm{a}_2)\bm{q}_1 , \quad \bm{q}_2 = \bm{q}_2/||\bm{q}_2|| \\ + \bm{q}_3 &= \bm{a}_3 - (\bm{q}_1\transp \bm{a}_3)\bm{q}_1 - (\bm{q}_2\transp \bm{a}_3)\bm{q}_2, \quad \bm{q}_3 = \bm{q}_3/||\bm{q}_3|| \end{align*} -あるいは,$\bm{a}$ を左辺に移動すると,以下のように記述できる. - +あるいは,$\bm{a}$ を左辺に移動して $r_{ij} = \bm{q}_i\transp \bm{a}_j$ とすると,以下のように記述できる. \begin{align*} \bm{a}_1 &= r_{11}\bm{q}_1\\ \bm{a}_2 &= r_{12}\bm{q}_1 + r_{22} \bm{q}_2\\ @@ -454,18 +455,13 @@ \subsection{$\boldsymbol{A=QR}$} \\ Q Q\transp=Q\transp Q = I \end{gather*} - \begin{figure}[H] \includegraphics[keepaspectratio, width=\linewidth]{QR-j.eps} \caption{$A=QR$} \end{figure} - - $A$ の列ベクトルは,正規直行化された $Q$ の列ベクトルへと変換される. $A$ の列ベクトルを再生するには,$Q$ と $R$ の掛け算を考えれば簡単である. ここで,パターン1 (P1) を再度見て視覚的に理解して欲しい. - - \clearpage \subsection{$\boldsymbol{S=Q \Lambda Q\transp}$} diff --git a/The-Art-of-Linear-Algebra.pdf b/The-Art-of-Linear-Algebra.pdf index 67925c4..944cc67 100644 Binary files a/The-Art-of-Linear-Algebra.pdf and b/The-Art-of-Linear-Algebra.pdf differ diff --git a/The-Art-of-Linear-Algebra.tex b/The-Art-of-Linear-Algebra.tex index d96593a..2c5e743 100644 --- a/The-Art-of-Linear-Algebra.tex +++ b/The-Art-of-Linear-Algebra.tex @@ -436,12 +436,12 @@ \subsection{$\boldsymbol{A=QR}$} procedure goes on. \begin{align*} - \bm{q}_1 &= \bm{a}_1/|\bm{a}_1| \\ - \bm{q}_2 &= \bm{a}_2 - (\bm{q}_1\transp \bm{a}_2)\bm{q}_1 , \quad \bm{q}_2 = \bm{q}_2/|\bm{q}_2| \\ - \bm{q}_3 &= \bm{a}_3 - (\bm{q}_1\transp \bm{a}_3)\bm{q}_1 - (\bm{q}_2\transp \bm{a}_3)\bm{q}_2, \quad \bm{q}_3 = \bm{q}_3/|\bm{q}_3| + \bm{q}_1 &= \bm{a}_1/||\bm{a}_1|| \\ + \bm{q}_2 &= \bm{a}_2 - (\bm{q}_1\transp \bm{a}_2)\bm{q}_1 , \quad \bm{q}_2 = \bm{q}_2/||\bm{q}_2|| \\ + \bm{q}_3 &= \bm{a}_3 - (\bm{q}_1\transp \bm{a}_3)\bm{q}_1 - (\bm{q}_2\transp \bm{a}_3)\bm{q}_2, \quad \bm{q}_3 = \bm{q}_3/||\bm{q}_3|| \end{align*} -or you can write: +or you can write with $r_{ij} = \bm{q}_i\transp \bm{a}_j$: \begin{align*} \bm{a}_1 &= r_{11}\bm{q}_1\\