Skip to content

Commit 9341f6f

Browse files
zhiicskevinthesun
authored andcommitted
[relay] use time_evaluator for measurement (apache#4191)
1 parent 07e3a1b commit 9341f6f

File tree

1 file changed

+45
-20
lines changed

1 file changed

+45
-20
lines changed

tests/python/relay/benchmarking/benchmark_vm.py

Lines changed: 45 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -21,16 +21,20 @@
2121
from tvm.contrib import graph_runtime
2222
from tvm import relay
2323
from tvm.relay import testing
24+
from tvm.relay import vm
25+
from tvm.relay import vmobj as _obj
2426

2527

2628
def benchmark_execution(mod,
2729
params,
28-
measure=False,
30+
measure=True,
2931
data_shape=(1, 3, 224, 224),
3032
out_shape=(1, 1000),
31-
dtype='float32'):
32-
def get_tvm_output(mod, data, params, target, ctx, dtype='float32'):
33-
with relay.build_config(opt_level=1):
33+
dtype='float32',
34+
model="unknown"):
35+
def get_graph_runtime_output(mod, data, params, target, ctx,
36+
dtype='float32', number=2, repeat=20):
37+
with relay.build_config(opt_level=3):
3438
graph, lib, params = relay.build(mod, target, params=params)
3539

3640
m = graph_runtime.create(graph, lib, ctx)
@@ -41,60 +45,81 @@ def get_tvm_output(mod, data, params, target, ctx, dtype='float32'):
4145
out = m.get_output(0, tvm.nd.empty(out_shape, dtype))
4246

4347
if measure:
44-
print("Evaluate graph runtime inference time cost...")
48+
print("Evaluate graph runtime inference cost of {} on "
49+
"{}".format(model, repr(ctx)))
4550
ftimer = m.module.time_evaluator("run", ctx, number=1, repeat=20)
4651
# Measure in millisecond.
4752
prof_res = np.array(ftimer().results) * 1000
48-
print("Mean inference time (std dev): %.2f ms (%.2f ms)" %
53+
print("Mean graph runtime inference time (std dev): %.2f ms (%.2f ms)" %
4954
(np.mean(prof_res), np.std(prof_res)))
5055

5156
return out.asnumpy()
5257

53-
def get_tvm_vm_output(mod, data, params, target, ctx, dtype='float32'):
54-
ex = relay.create_executor('vm', mod=mod, ctx=ctx)
55-
result = ex.evaluate()(data, **params)
58+
def get_vm_output(mod, data, params, target, ctx, dtype='float32',
59+
number=2, repeat=20):
60+
with relay.build_config(opt_level=3):
61+
exe = vm.compile(mod, target, params=params)
62+
rly_vm = vm.VirtualMachine(exe)
63+
rly_vm.init(ctx)
64+
result = rly_vm.run(data)
65+
66+
if measure:
67+
print("Evaluate vm inference cost of {} on {}".format(model,
68+
repr(ctx)))
69+
ftimer = rly_vm.mod.time_evaluator("invoke", ctx, number=number,
70+
repeat=repeat)
71+
# Measure in millisecond.
72+
prof_res = np.array(ftimer("main", _obj.Tensor(data)).results) * 1000
73+
print("Mean vm inference time (std dev): %.2f ms (%.2f ms)" %
74+
(np.mean(prof_res), np.std(prof_res)))
75+
5676
return result.asnumpy().astype(dtype)
5777

5878
# random input
5979
data = np.random.uniform(size=data_shape).astype(dtype)
6080
target = "llvm"
6181
ctx = tvm.cpu(0)
6282

63-
tvm_out = get_tvm_output(mod, tvm.nd.array(data.astype(dtype)), params,
64-
target, ctx, dtype)
65-
vm_out = get_tvm_vm_output(mod, tvm.nd.array(data.astype(dtype)), params,
66-
target, ctx, dtype)
83+
tvm_out = get_graph_runtime_output(mod, tvm.nd.array(data.astype(dtype)),
84+
params, target, ctx, dtype)
85+
vm_out = get_vm_output(mod, tvm.nd.array(data.astype(dtype)), params,
86+
target, ctx, dtype)
6787
tvm.testing.assert_allclose(vm_out, tvm_out, rtol=1e-5, atol=1e-5)
6888

6989

7090
def test_mlp():
7191
image_shape = (1, 1, 28, 28)
7292
mod, params = testing.mlp.get_workload(1)
73-
benchmark_execution(mod, params, data_shape=image_shape, out_shape=(1, 10))
93+
benchmark_execution(mod, params, data_shape=image_shape, out_shape=(1, 10),
94+
model="mlp")
7495

7596

7697
def test_vgg():
7798
for n in [11, 16]:
7899
mod, params = testing.vgg.get_workload(1, num_layers=n)
79-
benchmark_execution(mod, params)
100+
model = "vgg" + str(n)
101+
benchmark_execution(mod, params, model=model)
80102

81103

82104
def test_resnet():
83105
for n in [18, 50]:
84106
mod, params = testing.resnet.get_workload(batch_size=1, num_layers=n)
85-
benchmark_execution(mod, params, True)
107+
model = "resnet" + str(n)
108+
benchmark_execution(mod, params, model=model)
86109

87110

88111
def test_squeezenet():
89112
for version in ['1.0', '1.1']:
90113
mod, params = testing.squeezenet.get_workload(version=version)
91-
benchmark_execution(mod, params)
114+
model = "squeezenet" + version
115+
benchmark_execution(mod, params, model=model)
92116

93117

94118
def test_inception_v3():
95119
image_shape = (3, 299, 299)
96120
mod, params = testing.inception_v3.get_workload(image_shape=image_shape)
97-
benchmark_execution(mod, params, data_shape=(1, 3, 299, 299))
121+
benchmark_execution(mod, params, data_shape=(1, 3, 299, 299),
122+
model="inception_v3")
98123

99124

100125
def test_dqn():
@@ -112,7 +137,7 @@ def test_dcgan():
112137

113138
def test_mobilenet():
114139
mod, params = testing.mobilenet.get_workload(batch_size=1)
115-
benchmark_execution(mod, params)
140+
benchmark_execution(mod, params, model="mobilenet")
116141

117142
# TODO: enable when the low building performance (several minutes) fixed.
118143
def test_mobilenet_nhwc():
@@ -124,7 +149,7 @@ def test_mobilenet_nhwc():
124149

125150
def test_densenet():
126151
mod, params = testing.densenet.get_workload(batch_size=1)
127-
benchmark_execution(mod, params)
152+
benchmark_execution(mod, params, model="densenet")
128153

129154

130155
if __name__ == '__main__':

0 commit comments

Comments
 (0)