Skip to content

kevinschaich/pyspark-cheatsheet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

20 Commits
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🐍 πŸ“„ PySpark Cheat Sheet

A quick reference guide to the most commonly used patterns and functions in PySpark SQL.

Table of Contents

If you can't find what you're looking for, check out the PySpark Official Documentation and add it here!

Common Patterns

Importing Functions & Types

# Easily reference these as F.my_function() and T.my_type() below
from pyspark.sql import functions as F, types as T

Filtering

# Filter on equals condition
df = df.filter(df.is_adult == 'Y')

# Filter on >, <, >=, <= condition
df = df.filter(df.age > 25)

# Multiple conditions require parens around each
df = df.filter((df.age > 25) & (df.is_adult == 'Y'))

Joins

# Left join in another dataset
df = df.join(person_lookup_table, 'person_id', 'left')

# Useful for one-liner lookup code joins if you have a bunch
def lookup_and_replace(df1, df2, df1_key, df2_key, df2_value):
    return (
        df1
        .join(df2[[df2_key, df2_value]], df1[df1_key] == df2[df2_key], 'left')
        .withColumn(df1_key, F.coalesce(F.col(df2_value), F.col(df1_key)))
        .drop(df2_key)
        .drop(df2_value)
    )

df = lookup_and_replace(people, pay_codes, id, pay_code_id, pay_code_desc)

Creating New Columns

# Add a new static column
df = df.withColumn('status', F.lit('PASS'))

# Construct a new dynamic column
df = df.withColumn('full_name', F.when(
    (df.fname.isNotNull() & df.lname.isNotNull()), F.concat(df.fname, df.lname)
).otherwise(F.lit('N/A'))

Coalescing Values

# Take the first value that is not null
df = df.withColumn('last_name', F.coalesce(df.last_name, df.surname, F.lit('N/A')))

Casting, Nulls & Duplicates

# Cast a column to a different type
df = df.withColumn('price', df.price.cast(T.DoubleType()))

# Replace all nulls with a specific value
df = df.fillna({
    'first_name': 'Tom',
    'age': 0,
})

# Drop duplicate rows in a dataset (distinct)
df = df.dropDuplicates()

# Drop duplicate rows, but consider only specific columns
df = df.dropDuplicates(['name', 'height'])

Column Operations

# Pick which columns to keep, optionally rename some
df = df.select(
    'name',
    'age',
    F.col('dob').alias('date_of_birth'),
)

# Remove columns
df = df.drop('mod_dt', 'mod_username')

# Rename a column
df = df.withColumnRenamed('dob', 'date_of_birth')

# Keep all the columns which also occur in another dataset
df = df.select(*(F.col(c) for c in df2.columns))

# Batch Rename/Clean Columns
for col in df.columns:
    df = df.withColumnRenamed(col, col.lower().replace(' ', '_').replace('-', '_'))

String Operations

String Filters

# Contains - col.contains(string)
df = df.filter(df.name.contains('o'))

# Starts With - col.startswith(string)
df = df.filter(df.name.startswith('Al'))

# Ends With - col.endswith(string)
df = df.filter(df.name.endswith('ice'))

# Is Null - col.isNull()
df = df.filter(df.is_adult.isNull())

# Is Not Null - col.isNotNull()
df = df.filter(df.first_name.isNotNull())

# Like - col.like(string_with_sql_wildcards)
df = df.filter(df.name.like('Al%'))

# Regex Like - col.rlike(regex)
df = df.filter(df.name.rlike('[A-Z]*ice$'))

# Is In List - col.isin(*cols)
df = df.filter(df.name.isin('Bob', 'Mike'))

String Functions

# Substring - col.substr(startPos, length)
df = df.withColumn('short_id', df.id.substr(0, 10))

# Trim - F.trim(col)
df = df.withColumn('name', F.trim(df.name))

# Left Pad - F.lpad(col, len, pad)
# Right Pad - F.rpad(col, len, pad)
df = df.withColumn('id', F.lpad('id', 4, '0'))

# Left Trim - F.ltrim(col)
# Right Trim - F.rtrim(col)
df = df.withColumn('id', F.ltrim('id'))

# Concatenate - F.concat(*cols)
df = df.withColumn('full_name', F.concat('fname', F.lit(' '), 'lname'))

# Concatenate with Separator/Delimiter - F.concat_ws(delimiter, *cols)
df = df.withColumn('full_name', F.concat_ws('-', 'fname', 'lname'))

# Regex Replace - F.regexp_replace(str, pattern, replacement)[source]
df = df.withColumn('id', F.regexp_replace(id, '0F1(.*)', '1F1-$1'))

# Regex Extract - F.regexp_extract(str, pattern, idx)
df = df.withColumn('id', F.regexp_extract(id, '[0-9]*', 0))

Number Operations

# Round - F.round(col, scale=0)
df = df.withColumn('price', F.round('price', 0))

# Floor - F.floor(col)
df = df.withColumn('price', F.floor('price'))

# Ceiling - F.ceil(col)
df = df.withColumn('price', F.ceil('price'))

Date Operations

# Convert a string of known format to a date
df = df.withColumn('date_of_birth', F.to_date('date_of_birth', 'yyyy-MM-dd'))

# Keep only rows where date_of_birth is in the year 2017 
df = df.filter(F.year('date_of_birth') == F.lit('2017'))

# Keep only rows where date_of_birth is between 2017-05-10 and 2018-07-21
df = df.filter(
    (F.col('date_of_birth') >= F.lit('2017-05-10')) &
    (F.col('date_of_birth') <= F.lit('2018-07-21'))
)

Array Operations

# Column Array - F.array(*cols)
df = df.withColumn('full_name', F.array('fname', 'lname'))

# Empty Array - F.array(*cols)
df = df.withColumn('empty_array_column', F.array([]))

Aggregation Operations

# Row Count:                F.count()
# Sum of Rows in Group:     F.sum(*cols)
# Mean of Rows in Group:    F.mean(*cols)
# Max of Rows in Group:     F.max(*cols)
# Min of Rows in Group:     F.min(*cols)
# First Row in Group:       F.alias(*cols)
df = df.groupBy('gender').agg(F.max('age').alias('max_age_by_gender'))

# Collect a Set of all Rows in Group:       F.collect_set(col)
# Collect a List of all Rows in Group:      F.collect_list(col)
df = df.groupBy('age').agg(F.collect_set('name').alias('person_names'))

Advanced Operations

Repartitioning

# Repartition – df.repartition(num_output_partitions)
df = df.repartition(1)

UDFs (User Defined Functions)

# Multiply each row's age column by two
times_two_udf = F.udf(lambda x: x * 2)
df = df.withColumn('age', times_two_udf(df.age))

# Randomly choose a value to use as a row's name
import random

random_name_udf = F.udf(lambda: random.choice(['Bob', 'Tom', 'Amy', 'Jenna']))
df = df.withColumn('name', random_name_udf())