|
| 1 | +from keras.src.api_export import keras_export |
| 2 | +from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501 |
| 3 | + BaseImagePreprocessingLayer, |
| 4 | +) |
| 5 | +from keras.src.random import SeedGenerator |
| 6 | + |
| 7 | + |
| 8 | +@keras_export("keras.layers.RandomErasing") |
| 9 | +class RandomErasing(BaseImagePreprocessingLayer): |
| 10 | + """Random Erasing data augmentation technique. |
| 11 | +
|
| 12 | + Random Erasing is a data augmentation method where random patches of |
| 13 | + an image are erased (replaced by a constant value or noise) |
| 14 | + during training to improve generalization. |
| 15 | +
|
| 16 | + Args: |
| 17 | + factor: A single float or a tuple of two floats. |
| 18 | + `factor` controls the extent to which the image hue is impacted. |
| 19 | + `factor=0.0` makes this layer perform a no-op operation, |
| 20 | + while a value of `1.0` performs the most aggressive |
| 21 | + erasing available. If a tuple is used, a `factor` is |
| 22 | + sampled between the two values for every image augmented. If a |
| 23 | + single float is used, a value between `0.0` and the passed float is |
| 24 | + sampled. Default is 1.0. |
| 25 | + scale: A tuple of two floats representing the aspect ratio range of |
| 26 | + the erased patch. This defines the width-to-height ratio of |
| 27 | + the patch to be erased. It can help control the rw shape of |
| 28 | + the erased region. Default is (0.02, 0.33). |
| 29 | + fill_value: A value to fill the erased region with. This can be set to |
| 30 | + a constant value or `None` to sample a random value |
| 31 | + from a normal distribution. Default is `None`. |
| 32 | + value_range: the range of values the incoming images will have. |
| 33 | + Represented as a two-number tuple written `[low, high]`. This is |
| 34 | + typically either `[0, 1]` or `[0, 255]` depending on how your |
| 35 | + preprocessing pipeline is set up. |
| 36 | + seed: Integer. Used to create a random seed. |
| 37 | +
|
| 38 | + References: |
| 39 | + - [Random Erasing paper](https://arxiv.org/abs/1708.04896). |
| 40 | + """ |
| 41 | + |
| 42 | + _USE_BASE_FACTOR = False |
| 43 | + _FACTOR_BOUNDS = (0, 1) |
| 44 | + |
| 45 | + def __init__( |
| 46 | + self, |
| 47 | + factor=1.0, |
| 48 | + scale=(0.02, 0.33), |
| 49 | + fill_value=None, |
| 50 | + value_range=(0, 255), |
| 51 | + seed=None, |
| 52 | + data_format=None, |
| 53 | + **kwargs, |
| 54 | + ): |
| 55 | + super().__init__(data_format=data_format, **kwargs) |
| 56 | + self._set_factor(factor) |
| 57 | + self.scale = self._set_factor_by_name(scale, "scale") |
| 58 | + self.fill_value = fill_value |
| 59 | + self.value_range = value_range |
| 60 | + self.seed = seed |
| 61 | + self.generator = SeedGenerator(seed) |
| 62 | + |
| 63 | + if self.data_format == "channels_first": |
| 64 | + self.height_axis = -2 |
| 65 | + self.width_axis = -1 |
| 66 | + self.channel_axis = -3 |
| 67 | + else: |
| 68 | + self.height_axis = -3 |
| 69 | + self.width_axis = -2 |
| 70 | + self.channel_axis = -1 |
| 71 | + |
| 72 | + def _set_factor_by_name(self, factor, name): |
| 73 | + error_msg = ( |
| 74 | + f"The `{name}` argument should be a number " |
| 75 | + "(or a list of two numbers) " |
| 76 | + "in the range " |
| 77 | + f"[{self._FACTOR_BOUNDS[0]}, {self._FACTOR_BOUNDS[1]}]. " |
| 78 | + f"Received: factor={factor}" |
| 79 | + ) |
| 80 | + if isinstance(factor, (tuple, list)): |
| 81 | + if len(factor) != 2: |
| 82 | + raise ValueError(error_msg) |
| 83 | + if ( |
| 84 | + factor[0] > self._FACTOR_BOUNDS[1] |
| 85 | + or factor[1] < self._FACTOR_BOUNDS[0] |
| 86 | + ): |
| 87 | + raise ValueError(error_msg) |
| 88 | + lower, upper = sorted(factor) |
| 89 | + elif isinstance(factor, (int, float)): |
| 90 | + if ( |
| 91 | + factor < self._FACTOR_BOUNDS[0] |
| 92 | + or factor > self._FACTOR_BOUNDS[1] |
| 93 | + ): |
| 94 | + raise ValueError(error_msg) |
| 95 | + factor = abs(factor) |
| 96 | + lower, upper = [max(-factor, self._FACTOR_BOUNDS[0]), factor] |
| 97 | + else: |
| 98 | + raise ValueError(error_msg) |
| 99 | + return lower, upper |
| 100 | + |
| 101 | + def _compute_crop_bounds(self, batch_size, image_length, crop_ratio, seed): |
| 102 | + crop_length = self.backend.cast( |
| 103 | + crop_ratio * image_length, dtype=self.compute_dtype |
| 104 | + ) |
| 105 | + |
| 106 | + start_pos = self.backend.random.uniform( |
| 107 | + shape=[batch_size], |
| 108 | + minval=0, |
| 109 | + maxval=1, |
| 110 | + dtype=self.compute_dtype, |
| 111 | + seed=seed, |
| 112 | + ) * (image_length - crop_length) |
| 113 | + |
| 114 | + end_pos = start_pos + crop_length |
| 115 | + |
| 116 | + return start_pos, end_pos |
| 117 | + |
| 118 | + def _generate_batch_mask(self, images_shape, box_corners): |
| 119 | + def _generate_grid_xy(image_height, image_width): |
| 120 | + grid_y, grid_x = self.backend.numpy.meshgrid( |
| 121 | + self.backend.numpy.arange( |
| 122 | + image_height, dtype=self.compute_dtype |
| 123 | + ), |
| 124 | + self.backend.numpy.arange( |
| 125 | + image_width, dtype=self.compute_dtype |
| 126 | + ), |
| 127 | + indexing="ij", |
| 128 | + ) |
| 129 | + if self.data_format == "channels_last": |
| 130 | + grid_y = self.backend.cast( |
| 131 | + grid_y[None, :, :, None], dtype=self.compute_dtype |
| 132 | + ) |
| 133 | + grid_x = self.backend.cast( |
| 134 | + grid_x[None, :, :, None], dtype=self.compute_dtype |
| 135 | + ) |
| 136 | + else: |
| 137 | + grid_y = self.backend.cast( |
| 138 | + grid_y[None, None, :, :], dtype=self.compute_dtype |
| 139 | + ) |
| 140 | + grid_x = self.backend.cast( |
| 141 | + grid_x[None, None, :, :], dtype=self.compute_dtype |
| 142 | + ) |
| 143 | + return grid_x, grid_y |
| 144 | + |
| 145 | + image_height, image_width = ( |
| 146 | + images_shape[self.height_axis], |
| 147 | + images_shape[self.width_axis], |
| 148 | + ) |
| 149 | + grid_x, grid_y = _generate_grid_xy(image_height, image_width) |
| 150 | + |
| 151 | + x0, x1, y0, y1 = box_corners |
| 152 | + |
| 153 | + x0 = x0[:, None, None, None] |
| 154 | + y0 = y0[:, None, None, None] |
| 155 | + x1 = x1[:, None, None, None] |
| 156 | + y1 = y1[:, None, None, None] |
| 157 | + |
| 158 | + batch_masks = ( |
| 159 | + (grid_x >= x0) & (grid_x < x1) & (grid_y >= y0) & (grid_y < y1) |
| 160 | + ) |
| 161 | + batch_masks = self.backend.numpy.repeat( |
| 162 | + batch_masks, images_shape[self.channel_axis], axis=self.channel_axis |
| 163 | + ) |
| 164 | + |
| 165 | + return batch_masks |
| 166 | + |
| 167 | + def _get_fill_value(self, images, images_shape, seed): |
| 168 | + fill_value = self.fill_value |
| 169 | + if fill_value is None: |
| 170 | + fill_value = ( |
| 171 | + self.backend.random.normal( |
| 172 | + images_shape, |
| 173 | + dtype=self.compute_dtype, |
| 174 | + seed=seed, |
| 175 | + ) |
| 176 | + * self.value_range[1] |
| 177 | + ) |
| 178 | + else: |
| 179 | + error_msg = ( |
| 180 | + "The `fill_value` argument should be a number " |
| 181 | + "(or a list of three numbers) " |
| 182 | + ) |
| 183 | + if isinstance(fill_value, (tuple, list)): |
| 184 | + if len(fill_value) != 3: |
| 185 | + raise ValueError(error_msg) |
| 186 | + fill_value = self.backend.numpy.full_like( |
| 187 | + images, fill_value, dtype=self.compute_dtype |
| 188 | + ) |
| 189 | + elif isinstance(fill_value, (int, float)): |
| 190 | + fill_value = ( |
| 191 | + self.backend.numpy.ones( |
| 192 | + images_shape, dtype=self.compute_dtype |
| 193 | + ) |
| 194 | + * fill_value |
| 195 | + ) |
| 196 | + else: |
| 197 | + raise ValueError(error_msg) |
| 198 | + fill_value = self.backend.numpy.clip( |
| 199 | + fill_value, self.value_range[0], self.value_range[1] |
| 200 | + ) |
| 201 | + return fill_value |
| 202 | + |
| 203 | + def get_random_transformation(self, data, training=True, seed=None): |
| 204 | + if not training: |
| 205 | + return None |
| 206 | + |
| 207 | + if isinstance(data, dict): |
| 208 | + images = data["images"] |
| 209 | + else: |
| 210 | + images = data |
| 211 | + |
| 212 | + images_shape = self.backend.shape(images) |
| 213 | + rank = len(images_shape) |
| 214 | + if rank == 3: |
| 215 | + batch_size = 1 |
| 216 | + elif rank == 4: |
| 217 | + batch_size = images_shape[0] |
| 218 | + else: |
| 219 | + raise ValueError( |
| 220 | + "Expected the input image to be rank 3 or 4. Received " |
| 221 | + f"inputs.shape={images_shape}" |
| 222 | + ) |
| 223 | + |
| 224 | + image_height = images_shape[self.height_axis] |
| 225 | + image_width = images_shape[self.width_axis] |
| 226 | + |
| 227 | + seed = seed or self._get_seed_generator(self.backend._backend) |
| 228 | + |
| 229 | + mix_weight = self.backend.random.uniform( |
| 230 | + shape=(batch_size, 2), |
| 231 | + minval=self.scale[0], |
| 232 | + maxval=self.scale[1], |
| 233 | + dtype=self.compute_dtype, |
| 234 | + seed=seed, |
| 235 | + ) |
| 236 | + |
| 237 | + mix_weight = self.backend.numpy.sqrt(mix_weight) |
| 238 | + |
| 239 | + x0, x1 = self._compute_crop_bounds( |
| 240 | + batch_size, image_width, mix_weight[:, 0], seed |
| 241 | + ) |
| 242 | + y0, y1 = self._compute_crop_bounds( |
| 243 | + batch_size, image_height, mix_weight[:, 1], seed |
| 244 | + ) |
| 245 | + |
| 246 | + batch_masks = self._generate_batch_mask( |
| 247 | + images_shape, |
| 248 | + (x0, x1, y0, y1), |
| 249 | + ) |
| 250 | + |
| 251 | + erase_probability = self.backend.random.uniform( |
| 252 | + shape=(batch_size,), |
| 253 | + minval=self.factor[0], |
| 254 | + maxval=self.factor[1], |
| 255 | + seed=seed, |
| 256 | + ) |
| 257 | + |
| 258 | + random_threshold = self.backend.random.uniform( |
| 259 | + shape=(batch_size,), |
| 260 | + minval=0.0, |
| 261 | + maxval=1.0, |
| 262 | + seed=seed, |
| 263 | + ) |
| 264 | + apply_erasing = random_threshold < erase_probability |
| 265 | + |
| 266 | + fill_value = self._get_fill_value(images, images_shape, seed) |
| 267 | + |
| 268 | + return { |
| 269 | + "apply_erasing": apply_erasing, |
| 270 | + "batch_masks": batch_masks, |
| 271 | + "fill_value": fill_value, |
| 272 | + } |
| 273 | + |
| 274 | + def transform_images(self, images, transformation=None, training=True): |
| 275 | + if training: |
| 276 | + images = self.backend.cast(images, self.compute_dtype) |
| 277 | + batch_masks = transformation["batch_masks"] |
| 278 | + apply_erasing = transformation["apply_erasing"] |
| 279 | + fill_value = transformation["fill_value"] |
| 280 | + |
| 281 | + erased_images = self.backend.numpy.where( |
| 282 | + batch_masks, |
| 283 | + fill_value, |
| 284 | + images, |
| 285 | + ) |
| 286 | + |
| 287 | + images = self.backend.numpy.where( |
| 288 | + apply_erasing[:, None, None, None], |
| 289 | + erased_images, |
| 290 | + images, |
| 291 | + ) |
| 292 | + |
| 293 | + images = self.backend.cast(images, self.compute_dtype) |
| 294 | + return images |
| 295 | + |
| 296 | + def transform_labels(self, labels, transformation, training=True): |
| 297 | + return labels |
| 298 | + |
| 299 | + def transform_bounding_boxes( |
| 300 | + self, |
| 301 | + bounding_boxes, |
| 302 | + transformation, |
| 303 | + training=True, |
| 304 | + ): |
| 305 | + return bounding_boxes |
| 306 | + |
| 307 | + def transform_segmentation_masks( |
| 308 | + self, segmentation_masks, transformation, training=True |
| 309 | + ): |
| 310 | + return segmentation_masks |
| 311 | + |
| 312 | + def compute_output_shape(self, input_shape): |
| 313 | + return input_shape |
| 314 | + |
| 315 | + def get_config(self): |
| 316 | + config = { |
| 317 | + "factor": self.factor, |
| 318 | + "scale": self.scale, |
| 319 | + "fill_value": self.fill_value, |
| 320 | + "value_range": self.value_range, |
| 321 | + "seed": self.seed, |
| 322 | + } |
| 323 | + base_config = super().get_config() |
| 324 | + return {**base_config, **config} |
0 commit comments