Skip to content

Add VAEImageDecoder for StableDiffusionV3 #1796

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Aug 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions keras_nlp/src/models/stable_diffusion_v3/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Copyright 2024 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
126 changes: 126 additions & 0 deletions keras_nlp/src/models/stable_diffusion_v3/vae_attention.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
# Copyright 2024 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

from keras import layers
from keras import ops

from keras_nlp.src.utils.keras_utils import standardize_data_format


class VAEAttention(layers.Layer):
def __init__(self, filters, groups=32, data_format=None, **kwargs):
super().__init__(**kwargs)
self.filters = filters
self.data_format = standardize_data_format(data_format)
gn_axis = -1 if self.data_format == "channels_last" else 1

self.group_norm = layers.GroupNormalization(
groups=groups,
axis=gn_axis,
epsilon=1e-6,
dtype=self.dtype_policy,
name="group_norm",
)
self.query_conv2d = layers.Conv2D(
filters,
1,
1,
data_format=self.data_format,
dtype=self.dtype_policy,
name="query_conv2d",
)
self.key_conv2d = layers.Conv2D(
filters,
1,
1,
data_format=self.data_format,
dtype=self.dtype_policy,
name="key_conv2d",
)
self.value_conv2d = layers.Conv2D(
filters,
1,
1,
data_format=self.data_format,
dtype=self.dtype_policy,
name="value_conv2d",
)
self.softmax = layers.Softmax(dtype="float32")
self.output_conv2d = layers.Conv2D(
filters,
1,
1,
data_format=self.data_format,
dtype=self.dtype_policy,
name="output_conv2d",
)

self.groups = groups
self._inverse_sqrt_filters = 1.0 / math.sqrt(float(filters))

def build(self, input_shape):
self.group_norm.build(input_shape)
self.query_conv2d.build(input_shape)
self.key_conv2d.build(input_shape)
self.value_conv2d.build(input_shape)
self.output_conv2d.build(input_shape)

def call(self, inputs, training=None):
x = self.group_norm(inputs)
query = self.query_conv2d(x)
key = self.key_conv2d(x)
value = self.value_conv2d(x)

if self.data_format == "channels_first":
query = ops.transpose(query, (0, 2, 3, 1))
key = ops.transpose(key, (0, 2, 3, 1))
value = ops.transpose(value, (0, 2, 3, 1))
shape = ops.shape(inputs)
b = shape[0]
query = ops.reshape(query, (b, -1, self.filters))
key = ops.reshape(key, (b, -1, self.filters))
value = ops.reshape(value, (b, -1, self.filters))

# Compute attention.
query = ops.multiply(
query, ops.cast(self._inverse_sqrt_filters, query.dtype)
)
# [B, H0 * W0, C], [B, H1 * W1, C] -> [B, H0 * W0, H1 * W1]
attention_scores = ops.einsum("abc,adc->abd", query, key)
attention_scores = ops.cast(
self.softmax(attention_scores), self.compute_dtype
)
# [B, H2 * W2, C], [B, H0 * W0, H1 * W1] -> [B, H1 * W1 ,C]
attention_output = ops.einsum("abc,adb->adc", value, attention_scores)
x = ops.reshape(attention_output, shape)

x = self.output_conv2d(x)
if self.data_format == "channels_first":
x = ops.transpose(x, (0, 3, 1, 2))
x = ops.add(x, inputs)
return x

def get_config(self):
config = super().get_config()
config.update(
{
"filters": self.filters,
"groups": self.groups,
}
)
return config

def compute_output_shape(self, input_shape):
return input_shape
177 changes: 177 additions & 0 deletions keras_nlp/src/models/stable_diffusion_v3/vae_image_decoder.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
# Copyright 2024 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import keras
from keras import layers

from keras_nlp.src.models.stable_diffusion_v3.vae_attention import VAEAttention
from keras_nlp.src.utils.keras_utils import standardize_data_format


class VAEImageDecoder(keras.Model):
def __init__(
self,
stackwise_num_filters,
stackwise_num_blocks,
output_channels=3,
latent_shape=(None, None, 16),
data_format=None,
dtype=None,
**kwargs,
):
data_format = standardize_data_format(data_format)
gn_axis = -1 if data_format == "channels_last" else 1

# === Functional Model ===
latent_inputs = layers.Input(shape=latent_shape)

x = layers.Conv2D(
stackwise_num_filters[0],
3,
1,
padding="same",
data_format=data_format,
dtype=dtype,
name="input_projection",
)(latent_inputs)
x = apply_resnet_block(
x,
stackwise_num_filters[0],
data_format=data_format,
dtype=dtype,
name="input_block0",
)
x = VAEAttention(
stackwise_num_filters[0],
data_format=data_format,
dtype=dtype,
name="input_attention",
)(x)
x = apply_resnet_block(
x,
stackwise_num_filters[0],
data_format=data_format,
dtype=dtype,
name="input_block1",
)

# Stacks.
for i, filters in enumerate(stackwise_num_filters):
for j in range(stackwise_num_blocks[i]):
x = apply_resnet_block(
x,
filters,
data_format=data_format,
dtype=dtype,
name=f"block{i}_{j}",
)
if i != len(stackwise_num_filters) - 1:
# No upsamling in the last blcok.
x = layers.UpSampling2D(
2,
data_format=data_format,
dtype=dtype,
name=f"upsample_{i}",
)(x)
x = layers.Conv2D(
filters,
3,
1,
padding="same",
data_format=data_format,
dtype=dtype,
name=f"upsample_{i}_conv",
)(x)

# Ouput block.
x = layers.GroupNormalization(
groups=32,
axis=gn_axis,
epsilon=1e-6,
dtype=dtype,
name="output_norm",
)(x)
x = layers.Activation("swish", dtype=dtype, name="output_activation")(x)
image_outputs = layers.Conv2D(
output_channels,
3,
1,
padding="same",
data_format=data_format,
dtype=dtype,
name="output_projection",
)(x)
super().__init__(inputs=latent_inputs, outputs=image_outputs, **kwargs)

# === Config ===
self.stackwise_num_filters = stackwise_num_filters
self.stackwise_num_blocks = stackwise_num_blocks
self.output_channels = output_channels
self.latent_shape = latent_shape

def get_config(self):
config = super().get_config()
config.update(
{
"stackwise_num_filters": self.stackwise_num_filters,
"stackwise_num_blocks": self.stackwise_num_blocks,
"output_channels": self.output_channels,
"image_shape": self.latent_shape,
}
)
return config


def apply_resnet_block(x, filters, data_format=None, dtype=None, name=None):
data_format = standardize_data_format(data_format)
gn_axis = -1 if data_format == "channels_last" else 1
input_filters = x.shape[gn_axis]

residual = x
x = layers.GroupNormalization(
groups=32, axis=gn_axis, epsilon=1e-6, dtype=dtype, name=f"{name}_norm1"
)(x)
x = layers.Activation("swish", dtype=dtype)(x)
x = layers.Conv2D(
filters,
3,
1,
padding="same",
data_format=data_format,
dtype=dtype,
name=f"{name}_conv1",
)(x)
x = layers.GroupNormalization(
groups=32, axis=gn_axis, epsilon=1e-6, dtype=dtype, name=f"{name}_norm2"
)(x)
x = layers.Activation("swish")(x)
x = layers.Conv2D(
filters,
3,
1,
padding="same",
data_format=data_format,
dtype=dtype,
name=f"{name}_conv2",
)(x)
if input_filters != filters:
residual = layers.Conv2D(
filters,
1,
1,
data_format=data_format,
dtype=dtype,
name=f"{name}_residual_projection",
)(residual)
x = layers.Add(dtype=dtype)([residual, x])
return x
Loading