@@ -32,6 +32,9 @@ class ResNetFeaturePyramidBackbone(ResNetBackbone):
3232 the batch normalization and ReLU activation are applied after the
3333 convolution layers.
3434
35+ Note that, `ResNetFeaturePyramidBackbone` expects the inputs to be images
36+ with a value range of `[0, 255]` when `include_rescaling=True`.
37+
3538 Args:
3639 stackwise_num_filters: list of ints. The number of filters for each
3740 stack.
@@ -44,8 +47,8 @@ class ResNetFeaturePyramidBackbone(ResNetBackbone):
4447 use_pre_activation: boolean. Whether to use pre-activation or not.
4548 `True` for ResNetV2, `False` for ResNet.
4649 include_rescaling: boolean. If `True`, rescale the input using
47- `Rescaling(1 / 255.0)` layer . If `False`, do nothing. Defaults to
48- `True`.
50+ `Rescaling` and `Normalization` layers . If `False`, do nothing.
51+ Defaults to `True`.
4952 input_image_shape: tuple. The input shape without the batch size.
5053 Defaults to `(None, None, 3)`.
5154 pooling: `None` or str. Pooling mode for feature extraction. Defaults
@@ -68,23 +71,23 @@ class ResNetFeaturePyramidBackbone(ResNetBackbone):
6871 `~/.keras/keras.json`. If you never set it, then it will be
6972 `"channels_last"`.
7073 dtype: `None` or str or `keras.mixed_precision.DTypePolicy`. The dtype
71- to use for the models computations and weights.
74+ to use for the model's computations and weights.
7275 output_keys: `None` or list of strs. Keys to use for the outputs of
7376 the model. Defaults to `None`, meaning that all
7477 `self.pyramid_outputs` will be used.
7578
7679 Examples:
7780 ```python
78- input_data = np.ones( (2, 224, 224, 3), dtype="float32" )
81+ input_data = np.random.uniform(0, 255, size= (2, 224, 224, 3))
7982
80- # Pretrained ResNet feature pyramid backbone.
83+ # Pretrained ResNet backbone.
8184 model = keras_nlp.models.ResNetFeaturePyramidBackbone.from_preset(
8285 "resnet50"
8386 )
8487 model(input_data)
8588
86- # Randomly initialized ResNetV2 feature pyramidbackbone with a custom config.
87- model = keras_nlp.models.ResNetBackbone (
89+ # Randomly initialized ResNetV2 backbone with a custom config.
90+ model = keras_nlp.models.ResNetFeaturePyramidBackbone (
8891 stackwise_num_filters=[64, 64, 64],
8992 stackwise_num_blocks=[2, 2, 2],
9093 stackwise_num_strides=[1, 2, 2],
0 commit comments