|
32 | 32 |
|
33 | 33 |
|
34 | 34 | BASE_WEIGTHS_PATH = ( |
35 | | - 'https://github.com/fchollet/deep-learning-models/' |
36 | | - 'releases/download/v0.8/') |
| 35 | + 'https://github.com/keras-team/keras-applications/' |
| 36 | + 'releases/download/densenet/') |
37 | 37 | DENSENET121_WEIGHT_PATH = ( |
38 | 38 | BASE_WEIGTHS_PATH + |
39 | 39 | 'densenet121_weights_tf_dim_ordering_tf_kernels.h5') |
@@ -253,38 +253,38 @@ def DenseNet(blocks, |
253 | 253 | 'densenet121_weights_tf_dim_ordering_tf_kernels.h5', |
254 | 254 | DENSENET121_WEIGHT_PATH, |
255 | 255 | cache_subdir='models', |
256 | | - file_hash='0962ca643bae20f9b6771cb844dca3b0') |
| 256 | + file_hash='9d60b8095a5708f2dcce2bca79d332c7') |
257 | 257 | elif blocks == [6, 12, 32, 32]: |
258 | 258 | weights_path = keras_utils.get_file( |
259 | 259 | 'densenet169_weights_tf_dim_ordering_tf_kernels.h5', |
260 | 260 | DENSENET169_WEIGHT_PATH, |
261 | 261 | cache_subdir='models', |
262 | | - file_hash='bcf9965cf5064a5f9eb6d7dc69386f43') |
| 262 | + file_hash='d699b8f76981ab1b30698df4c175e90b') |
263 | 263 | elif blocks == [6, 12, 48, 32]: |
264 | 264 | weights_path = keras_utils.get_file( |
265 | 265 | 'densenet201_weights_tf_dim_ordering_tf_kernels.h5', |
266 | 266 | DENSENET201_WEIGHT_PATH, |
267 | 267 | cache_subdir='models', |
268 | | - file_hash='7bb75edd58cb43163be7e0005fbe95ef') |
| 268 | + file_hash='1ceb130c1ea1b78c3bf6114dbdfd8807') |
269 | 269 | else: |
270 | 270 | if blocks == [6, 12, 24, 16]: |
271 | 271 | weights_path = keras_utils.get_file( |
272 | 272 | 'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5', |
273 | 273 | DENSENET121_WEIGHT_PATH_NO_TOP, |
274 | 274 | cache_subdir='models', |
275 | | - file_hash='4912a53fbd2a69346e7f2c0b5ec8c6d3') |
| 275 | + file_hash='30ee3e1110167f948a6b9946edeeb738') |
276 | 276 | elif blocks == [6, 12, 32, 32]: |
277 | 277 | weights_path = keras_utils.get_file( |
278 | 278 | 'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5', |
279 | 279 | DENSENET169_WEIGHT_PATH_NO_TOP, |
280 | 280 | cache_subdir='models', |
281 | | - file_hash='50662582284e4cf834ce40ab4dfa58c6') |
| 281 | + file_hash='b8c4d4c20dd625c148057b9ff1c1176b') |
282 | 282 | elif blocks == [6, 12, 48, 32]: |
283 | 283 | weights_path = keras_utils.get_file( |
284 | 284 | 'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5', |
285 | 285 | DENSENET201_WEIGHT_PATH_NO_TOP, |
286 | 286 | cache_subdir='models', |
287 | | - file_hash='1c2de60ee40562448dbac34a0737e798') |
| 287 | + file_hash='c13680b51ded0fb44dff2d8f86ac8bb1') |
288 | 288 | model.load_weights(weights_path) |
289 | 289 | elif weights is not None: |
290 | 290 | model.load_weights(weights) |
|
0 commit comments