This repository has been archived by the owner on Nov 3, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 907
/
xception.py
319 lines (272 loc) · 13.2 KB
/
xception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
"""Xception V1 model for Keras.
On ImageNet, this model gets to a top-1 validation accuracy of 0.790
and a top-5 validation accuracy of 0.945.
Do note that the input image format for this model is different than for
the VGG16 and ResNet models (299x299 instead of 224x224),
and that the input preprocessing function
is also different (same as Inception V3).
# Reference
- [Xception: Deep Learning with Depthwise Separable Convolutions](
https://arxiv.org/abs/1610.02357) (CVPR 2017)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import warnings
from . import get_submodules_from_kwargs
from . import imagenet_utils
from .imagenet_utils import decode_predictions
from .imagenet_utils import _obtain_input_shape
TF_WEIGHTS_PATH = (
'https://github.com/fchollet/deep-learning-models/'
'releases/download/v0.4/'
'xception_weights_tf_dim_ordering_tf_kernels.h5')
TF_WEIGHTS_PATH_NO_TOP = (
'https://github.com/fchollet/deep-learning-models/'
'releases/download/v0.4/'
'xception_weights_tf_dim_ordering_tf_kernels_notop.h5')
def Xception(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
"""Instantiates the Xception architecture.
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.
Note that the default input image size for this model is 299x299.
# Arguments
include_top: whether to include the fully-connected
layer at the top of the network.
weights: one of `None` (random initialization),
'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded.
input_tensor: optional Keras tensor
(i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(299, 299, 3)`.
It should have exactly 3 inputs channels,
and width and height should be no smaller than 71.
E.g. `(150, 150, 3)` would be one valid value.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the
last convolutional block.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a 2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True,
and if no `weights` argument is specified.
# Returns
A Keras model instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
RuntimeError: If attempting to run this model with a
backend that does not support separable convolutions.
"""
backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)
if not (weights in {'imagenet', None} or os.path.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded.')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
' as true, `classes` should be 1000')
# Determine proper input shape
input_shape = _obtain_input_shape(input_shape,
default_size=299,
min_size=71,
data_format=backend.image_data_format(),
require_flatten=include_top,
weights=weights)
if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
if not backend.is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1
x = layers.Conv2D(32, (3, 3),
strides=(2, 2),
use_bias=False,
name='block1_conv1')(img_input)
x = layers.BatchNormalization(axis=channel_axis, name='block1_conv1_bn')(x)
x = layers.Activation('relu', name='block1_conv1_act')(x)
x = layers.Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
x = layers.BatchNormalization(axis=channel_axis, name='block1_conv2_bn')(x)
x = layers.Activation('relu', name='block1_conv2_act')(x)
residual = layers.Conv2D(128, (1, 1),
strides=(2, 2),
padding='same',
use_bias=False)(x)
residual = layers.BatchNormalization(axis=channel_axis)(residual)
x = layers.SeparableConv2D(128, (3, 3),
padding='same',
use_bias=False,
name='block2_sepconv1')(x)
x = layers.BatchNormalization(axis=channel_axis, name='block2_sepconv1_bn')(x)
x = layers.Activation('relu', name='block2_sepconv2_act')(x)
x = layers.SeparableConv2D(128, (3, 3),
padding='same',
use_bias=False,
name='block2_sepconv2')(x)
x = layers.BatchNormalization(axis=channel_axis, name='block2_sepconv2_bn')(x)
x = layers.MaxPooling2D((3, 3),
strides=(2, 2),
padding='same',
name='block2_pool')(x)
x = layers.add([x, residual])
residual = layers.Conv2D(256, (1, 1), strides=(2, 2),
padding='same', use_bias=False)(x)
residual = layers.BatchNormalization(axis=channel_axis)(residual)
x = layers.Activation('relu', name='block3_sepconv1_act')(x)
x = layers.SeparableConv2D(256, (3, 3),
padding='same',
use_bias=False,
name='block3_sepconv1')(x)
x = layers.BatchNormalization(axis=channel_axis, name='block3_sepconv1_bn')(x)
x = layers.Activation('relu', name='block3_sepconv2_act')(x)
x = layers.SeparableConv2D(256, (3, 3),
padding='same',
use_bias=False,
name='block3_sepconv2')(x)
x = layers.BatchNormalization(axis=channel_axis, name='block3_sepconv2_bn')(x)
x = layers.MaxPooling2D((3, 3), strides=(2, 2),
padding='same',
name='block3_pool')(x)
x = layers.add([x, residual])
residual = layers.Conv2D(728, (1, 1),
strides=(2, 2),
padding='same',
use_bias=False)(x)
residual = layers.BatchNormalization(axis=channel_axis)(residual)
x = layers.Activation('relu', name='block4_sepconv1_act')(x)
x = layers.SeparableConv2D(728, (3, 3),
padding='same',
use_bias=False,
name='block4_sepconv1')(x)
x = layers.BatchNormalization(axis=channel_axis, name='block4_sepconv1_bn')(x)
x = layers.Activation('relu', name='block4_sepconv2_act')(x)
x = layers.SeparableConv2D(728, (3, 3),
padding='same',
use_bias=False,
name='block4_sepconv2')(x)
x = layers.BatchNormalization(axis=channel_axis, name='block4_sepconv2_bn')(x)
x = layers.MaxPooling2D((3, 3), strides=(2, 2),
padding='same',
name='block4_pool')(x)
x = layers.add([x, residual])
for i in range(8):
residual = x
prefix = 'block' + str(i + 5)
x = layers.Activation('relu', name=prefix + '_sepconv1_act')(x)
x = layers.SeparableConv2D(728, (3, 3),
padding='same',
use_bias=False,
name=prefix + '_sepconv1')(x)
x = layers.BatchNormalization(axis=channel_axis,
name=prefix + '_sepconv1_bn')(x)
x = layers.Activation('relu', name=prefix + '_sepconv2_act')(x)
x = layers.SeparableConv2D(728, (3, 3),
padding='same',
use_bias=False,
name=prefix + '_sepconv2')(x)
x = layers.BatchNormalization(axis=channel_axis,
name=prefix + '_sepconv2_bn')(x)
x = layers.Activation('relu', name=prefix + '_sepconv3_act')(x)
x = layers.SeparableConv2D(728, (3, 3),
padding='same',
use_bias=False,
name=prefix + '_sepconv3')(x)
x = layers.BatchNormalization(axis=channel_axis,
name=prefix + '_sepconv3_bn')(x)
x = layers.add([x, residual])
residual = layers.Conv2D(1024, (1, 1), strides=(2, 2),
padding='same', use_bias=False)(x)
residual = layers.BatchNormalization(axis=channel_axis)(residual)
x = layers.Activation('relu', name='block13_sepconv1_act')(x)
x = layers.SeparableConv2D(728, (3, 3),
padding='same',
use_bias=False,
name='block13_sepconv1')(x)
x = layers.BatchNormalization(axis=channel_axis, name='block13_sepconv1_bn')(x)
x = layers.Activation('relu', name='block13_sepconv2_act')(x)
x = layers.SeparableConv2D(1024, (3, 3),
padding='same',
use_bias=False,
name='block13_sepconv2')(x)
x = layers.BatchNormalization(axis=channel_axis, name='block13_sepconv2_bn')(x)
x = layers.MaxPooling2D((3, 3),
strides=(2, 2),
padding='same',
name='block13_pool')(x)
x = layers.add([x, residual])
x = layers.SeparableConv2D(1536, (3, 3),
padding='same',
use_bias=False,
name='block14_sepconv1')(x)
x = layers.BatchNormalization(axis=channel_axis, name='block14_sepconv1_bn')(x)
x = layers.Activation('relu', name='block14_sepconv1_act')(x)
x = layers.SeparableConv2D(2048, (3, 3),
padding='same',
use_bias=False,
name='block14_sepconv2')(x)
x = layers.BatchNormalization(axis=channel_axis, name='block14_sepconv2_bn')(x)
x = layers.Activation('relu', name='block14_sepconv2_act')(x)
if include_top:
x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
x = layers.Dense(classes, activation='softmax', name='predictions')(x)
else:
if pooling == 'avg':
x = layers.GlobalAveragePooling2D()(x)
elif pooling == 'max':
x = layers.GlobalMaxPooling2D()(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = keras_utils.get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = models.Model(inputs, x, name='xception')
# Load weights.
if weights == 'imagenet':
if include_top:
weights_path = keras_utils.get_file(
'xception_weights_tf_dim_ordering_tf_kernels.h5',
TF_WEIGHTS_PATH,
cache_subdir='models',
file_hash='0a58e3b7378bc2990ea3b43d5981f1f6')
else:
weights_path = keras_utils.get_file(
'xception_weights_tf_dim_ordering_tf_kernels_notop.h5',
TF_WEIGHTS_PATH_NO_TOP,
cache_subdir='models',
file_hash='b0042744bf5b25fce3cb969f33bebb97')
model.load_weights(weights_path)
if backend.backend() == 'theano':
keras_utils.convert_all_kernels_in_model(model)
elif weights is not None:
model.load_weights(weights)
return model
def preprocess_input(x, **kwargs):
"""Preprocesses a numpy array encoding a batch of images.
# Arguments
x: a 4D numpy array consists of RGB values within [0, 255].
# Returns
Preprocessed array.
"""
return imagenet_utils.preprocess_input(x, mode='tf', **kwargs)