Boilerplate of Dockerfiles for Jupyter Notebook, Tensorflow, Keras and so on with Miniconda.
- Docker installed
- Clone this repo
- Select
Dockerfile
and Editdockerfile
value indocker-compose.yml
- Run
docker-compose up --build
in terminal
- Port:
8888:8888
- Volume:
./data:/data
- --notebook-dir:
/data/notebooks
Dockerfile Name | Main Packages | Virtual Env. | Base Image |
---|---|---|---|
Dockerfile.mini.base | Miniconda, Jupyter Notebook | Not used | continuumio/miniconda3 |
Dockerfile.mini.tensorflow | Miniconda, Jupyter Notebook, Tensorflow | Not used | keidrun/ml-base-mini |
Dockerfile.mini.keras | Miniconda, Jupyter Notebook, Tensorflow, Keras | Not used | keidrun/ml-base-mini |
Dockerfile.mini.pytorch | Miniconda, Jupyter Notebook, Pytorch | Not used | keidrun/ml-base-mini |
Docker Image Name | Built Dockerfile Name |
---|---|
keidrun/ml-base-mini | Dockerfile.mini.base |
keidrun/ml-tensorflow-mini | Dockerfile.mini.tensorflow |
keidrun/ml-keras-mini | Dockerfile.mini.keras |
keidrun/ml-pytorch-mini | Dockerfile.mini.pytorch |
For example, if you'd like to use keidrun/ml-keras-mini
image, run the following command:
docker container run -it -p 8888:8888 -v $(pwd)/data:/data keidrun/ml-keras-mini
Or edit image
value in docker-compose.image.yml
and run the following command:
docker-compose -f docker-compose.image.yml up