|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Visualization Gallery\n", |
| 8 | + "\n", |
| 9 | + "This notebook shows common visualization issues encountered in Xarray." |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": null, |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "import cartopy.crs as ccrs\n", |
| 19 | + "import matplotlib.pyplot as plt\n", |
| 20 | + "import xarray as xr\n", |
| 21 | + "%matplotlib inline" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "markdown", |
| 26 | + "metadata": {}, |
| 27 | + "source": [ |
| 28 | + "Load example dataset:" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "code", |
| 33 | + "execution_count": null, |
| 34 | + "metadata": {}, |
| 35 | + "outputs": [], |
| 36 | + "source": [ |
| 37 | + "ds = xr.tutorial.load_dataset('air_temperature')" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "markdown", |
| 42 | + "metadata": {}, |
| 43 | + "source": [ |
| 44 | + "## Multiple plots and map projections\n", |
| 45 | + "\n", |
| 46 | + "Control the map projection parameters on multiple axes\n", |
| 47 | + "\n", |
| 48 | + "This example illustrates how to plot multiple maps and control their extent\n", |
| 49 | + "and aspect ratio.\n", |
| 50 | + "\n", |
| 51 | + "For more details see [this discussion](https://github.com/pydata/xarray/issues/1397#issuecomment-299190567) on github." |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "code", |
| 56 | + "execution_count": null, |
| 57 | + "metadata": {}, |
| 58 | + "outputs": [], |
| 59 | + "source": [ |
| 60 | + "air = ds.air.isel(time=[0, 724]) - 273.15\n", |
| 61 | + "\n", |
| 62 | + "# This is the map projection we want to plot *onto*\n", |
| 63 | + "map_proj = ccrs.LambertConformal(central_longitude=-95, central_latitude=45)\n", |
| 64 | + "\n", |
| 65 | + "p = air.plot(transform=ccrs.PlateCarree(), # the data's projection\n", |
| 66 | + " col='time', col_wrap=1, # multiplot settings\n", |
| 67 | + " aspect=ds.dims['lon'] / ds.dims['lat'], # for a sensible figsize\n", |
| 68 | + " subplot_kws={'projection': map_proj}) # the plot's projection\n", |
| 69 | + "\n", |
| 70 | + "# We have to set the map's options on all axes\n", |
| 71 | + "for ax in p.axes.flat:\n", |
| 72 | + " ax.coastlines()\n", |
| 73 | + " ax.set_extent([-160, -30, 5, 75])" |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "markdown", |
| 78 | + "metadata": {}, |
| 79 | + "source": [ |
| 80 | + "## Centered colormaps\n", |
| 81 | + "\n", |
| 82 | + "Xarray's automatic colormaps choice" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "code", |
| 87 | + "execution_count": null, |
| 88 | + "metadata": {}, |
| 89 | + "outputs": [], |
| 90 | + "source": [ |
| 91 | + "air = ds.air.isel(time=0)\n", |
| 92 | + "\n", |
| 93 | + "f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(8, 6))\n", |
| 94 | + "\n", |
| 95 | + "# The first plot (in kelvins) chooses \"viridis\" and uses the data's min/max\n", |
| 96 | + "air.plot(ax=ax1, cbar_kwargs={'label': 'K'})\n", |
| 97 | + "ax1.set_title('Kelvins: default')\n", |
| 98 | + "ax2.set_xlabel('')\n", |
| 99 | + "\n", |
| 100 | + "# The second plot (in celsius) now chooses \"BuRd\" and centers min/max around 0\n", |
| 101 | + "airc = air - 273.15\n", |
| 102 | + "airc.plot(ax=ax2, cbar_kwargs={'label': '°C'})\n", |
| 103 | + "ax2.set_title('Celsius: default')\n", |
| 104 | + "ax2.set_xlabel('')\n", |
| 105 | + "ax2.set_ylabel('')\n", |
| 106 | + "\n", |
| 107 | + "# The center doesn't have to be 0\n", |
| 108 | + "air.plot(ax=ax3, center=273.15, cbar_kwargs={'label': 'K'})\n", |
| 109 | + "ax3.set_title('Kelvins: center=273.15')\n", |
| 110 | + "\n", |
| 111 | + "# Or it can be ignored\n", |
| 112 | + "airc.plot(ax=ax4, center=False, cbar_kwargs={'label': '°C'})\n", |
| 113 | + "ax4.set_title('Celsius: center=False')\n", |
| 114 | + "ax4.set_ylabel('')\n", |
| 115 | + "\n", |
| 116 | + "# Make it nice\n", |
| 117 | + "plt.tight_layout()" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "markdown", |
| 122 | + "metadata": {}, |
| 123 | + "source": [ |
| 124 | + "## Control the plot's colorbar\n", |
| 125 | + "\n", |
| 126 | + "Use ``cbar_kwargs`` keyword to specify the number of ticks.\n", |
| 127 | + "The ``spacing`` kwarg can be used to draw proportional ticks." |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": null, |
| 133 | + "metadata": {}, |
| 134 | + "outputs": [], |
| 135 | + "source": [ |
| 136 | + "air2d = ds.air.isel(time=500)\n", |
| 137 | + "\n", |
| 138 | + "# Prepare the figure\n", |
| 139 | + "f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14, 4))\n", |
| 140 | + "\n", |
| 141 | + "# Irregular levels to illustrate the use of a proportional colorbar\n", |
| 142 | + "levels = [245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 310, 340]\n", |
| 143 | + "\n", |
| 144 | + "# Plot data\n", |
| 145 | + "air2d.plot(ax=ax1, levels=levels)\n", |
| 146 | + "air2d.plot(ax=ax2, levels=levels, cbar_kwargs={'ticks': levels})\n", |
| 147 | + "air2d.plot(ax=ax3, levels=levels, cbar_kwargs={'ticks': levels,\n", |
| 148 | + " 'spacing': 'proportional'})\n", |
| 149 | + "\n", |
| 150 | + "# Show plots\n", |
| 151 | + "plt.tight_layout()" |
| 152 | + ] |
| 153 | + }, |
| 154 | + { |
| 155 | + "cell_type": "markdown", |
| 156 | + "metadata": {}, |
| 157 | + "source": [ |
| 158 | + "## Multiple lines from a 2d DataArray\n", |
| 159 | + "\n", |
| 160 | + "Use ``xarray.plot.line`` on a 2d DataArray to plot selections as\n", |
| 161 | + "multiple lines.\n", |
| 162 | + "\n", |
| 163 | + "See ``plotting.multiplelines`` for more details." |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "code", |
| 168 | + "execution_count": null, |
| 169 | + "metadata": {}, |
| 170 | + "outputs": [], |
| 171 | + "source": [ |
| 172 | + "air = ds.air - 273.15 # to celsius\n", |
| 173 | + "\n", |
| 174 | + "# Prepare the figure\n", |
| 175 | + "f, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharey=True)\n", |
| 176 | + "\n", |
| 177 | + "# Selected latitude indices\n", |
| 178 | + "isel_lats = [10, 15, 20]\n", |
| 179 | + "\n", |
| 180 | + "# Temperature vs longitude plot - illustrates the \"hue\" kwarg\n", |
| 181 | + "air.isel(time=0, lat=isel_lats).plot.line(ax=ax1, hue='lat')\n", |
| 182 | + "ax1.set_ylabel('°C')\n", |
| 183 | + "\n", |
| 184 | + "# Temperature vs time plot - illustrates the \"x\" and \"add_legend\" kwargs\n", |
| 185 | + "air.isel(lon=30, lat=isel_lats).plot.line(ax=ax2, x='time', add_legend=False)\n", |
| 186 | + "ax2.set_ylabel('')\n", |
| 187 | + "\n", |
| 188 | + "# Show\n", |
| 189 | + "plt.tight_layout()" |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "markdown", |
| 194 | + "metadata": {}, |
| 195 | + "source": [ |
| 196 | + "## `imshow()` and rasterio map projections\n", |
| 197 | + "\n", |
| 198 | + "\n", |
| 199 | + "Using rasterio's projection information for more accurate plots.\n", |
| 200 | + "\n", |
| 201 | + "This example extends `recipes.rasterio` and plots the image in the\n", |
| 202 | + "original map projection instead of relying on pcolormesh and a map\n", |
| 203 | + "transformation." |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "cell_type": "code", |
| 208 | + "execution_count": null, |
| 209 | + "metadata": {}, |
| 210 | + "outputs": [], |
| 211 | + "source": [ |
| 212 | + "url = 'https://github.com/mapbox/rasterio/raw/master/tests/data/RGB.byte.tif'\n", |
| 213 | + "da = xr.open_rasterio(url)\n", |
| 214 | + "\n", |
| 215 | + "# The data is in UTM projection. We have to set it manually until\n", |
| 216 | + "# https://github.com/SciTools/cartopy/issues/813 is implemented\n", |
| 217 | + "crs = ccrs.UTM('18N')\n", |
| 218 | + "\n", |
| 219 | + "# Plot on a map\n", |
| 220 | + "ax = plt.subplot(projection=crs)\n", |
| 221 | + "da.plot.imshow(ax=ax, rgb='band', transform=crs)\n", |
| 222 | + "ax.coastlines('10m', color='r')" |
| 223 | + ] |
| 224 | + }, |
| 225 | + { |
| 226 | + "cell_type": "markdown", |
| 227 | + "metadata": {}, |
| 228 | + "source": [ |
| 229 | + "## Parsing rasterio's geocoordinates\n", |
| 230 | + "\n", |
| 231 | + "Converting a projection's cartesian coordinates into 2D longitudes and\n", |
| 232 | + "latitudes.\n", |
| 233 | + "\n", |
| 234 | + "These new coordinates might be handy for plotting and indexing, but it should\n", |
| 235 | + "be kept in mind that a grid which is regular in projection coordinates will\n", |
| 236 | + "likely be irregular in lon/lat. It is often recommended to work in the data's\n", |
| 237 | + "original map projection (see `recipes.rasterio_rgb`)." |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "code", |
| 242 | + "execution_count": null, |
| 243 | + "metadata": {}, |
| 244 | + "outputs": [], |
| 245 | + "source": [ |
| 246 | + "from rasterio.warp import transform\n", |
| 247 | + "import numpy as np\n", |
| 248 | + "\n", |
| 249 | + "url = 'https://github.com/mapbox/rasterio/raw/master/tests/data/RGB.byte.tif'\n", |
| 250 | + "da = xr.open_rasterio(url)\n", |
| 251 | + "\n", |
| 252 | + "# Compute the lon/lat coordinates with rasterio.warp.transform\n", |
| 253 | + "ny, nx = len(da['y']), len(da['x'])\n", |
| 254 | + "x, y = np.meshgrid(da['x'], da['y'])\n", |
| 255 | + "\n", |
| 256 | + "# Rasterio works with 1D arrays\n", |
| 257 | + "lon, lat = transform(da.crs, {'init': 'EPSG:4326'},\n", |
| 258 | + " x.flatten(), y.flatten())\n", |
| 259 | + "lon = np.asarray(lon).reshape((ny, nx))\n", |
| 260 | + "lat = np.asarray(lat).reshape((ny, nx))\n", |
| 261 | + "da.coords['lon'] = (('y', 'x'), lon)\n", |
| 262 | + "da.coords['lat'] = (('y', 'x'), lat)\n", |
| 263 | + "\n", |
| 264 | + "# Compute a greyscale out of the rgb image\n", |
| 265 | + "greyscale = da.mean(dim='band')\n", |
| 266 | + "\n", |
| 267 | + "# Plot on a map\n", |
| 268 | + "ax = plt.subplot(projection=ccrs.PlateCarree())\n", |
| 269 | + "greyscale.plot(ax=ax, x='lon', y='lat', transform=ccrs.PlateCarree(),\n", |
| 270 | + " cmap='Greys_r', add_colorbar=False)\n", |
| 271 | + "ax.coastlines('10m', color='r')" |
| 272 | + ] |
| 273 | + } |
| 274 | + ], |
| 275 | + "metadata": { |
| 276 | + "kernelspec": { |
| 277 | + "display_name": "Python 3", |
| 278 | + "language": "python", |
| 279 | + "name": "python3" |
| 280 | + }, |
| 281 | + "language_info": { |
| 282 | + "codemirror_mode": { |
| 283 | + "name": "ipython", |
| 284 | + "version": 3 |
| 285 | + }, |
| 286 | + "file_extension": ".py", |
| 287 | + "mimetype": "text/x-python", |
| 288 | + "name": "python", |
| 289 | + "nbconvert_exporter": "python", |
| 290 | + "pygments_lexer": "ipython3", |
| 291 | + "version": "3.7.3" |
| 292 | + } |
| 293 | + }, |
| 294 | + "nbformat": 4, |
| 295 | + "nbformat_minor": 4 |
| 296 | +} |
0 commit comments