-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata.py
1183 lines (978 loc) · 42.7 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
import random
import numpy as np
import json as jsonmod
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
import nltk
from PIL import Image
from pycocotools.coco import COCO
from transformers import BertTokenizer
def get_paths(path, name='coco', use_restval=True):
"""
Returns paths to images and annotations for the given datasets. For MSCOCO
indices are also returned to control the data split being used.
The indices are extracted from the Karpathy et al. splits using this snippet:
>>> import json
>>> dataset=json.load(open('dataset_coco.json','r'))
>>> A=[]
>>> for i in range(len(D['images'])):
... if D['images'][i]['split'] == 'val':
... A+=D['images'][i]['sentids'][:5]
...
:param name: Dataset names
:param use_restval: If True, the `restval` data is included in train for COCO dataset.
"""
roots, ids = {}, {}
if 'coco' == name:
imgdir = os.path.join(path, 'images')
capdir = os.path.join(path, 'annotations')
roots['train'] = {
'img': os.path.join(imgdir, 'train2014'),
'cap': os.path.join(capdir, 'captions_train2014.json'),
}
roots['val'] = {
'img': os.path.join(imgdir, 'val2014'),
'cap': os.path.join(capdir, 'captions_val2014.json'),
}
roots['test'] = {
'img': os.path.join(imgdir, 'val2014'),
'cap': os.path.join(capdir, 'captions_val2014.json'),
}
roots['trainrestval'] = {
'img': (roots['train']['img'], roots['val']['img']),
'cap': (roots['train']['cap'], roots['val']['cap']),
}
ids['train'] = np.load(os.path.join(capdir, 'coco_train_ids.npy'))
ids['val'] = np.load(os.path.join(capdir, 'coco_dev_ids.npy'))[:5000]
ids['test'] = np.load(os.path.join(capdir, 'coco_test_ids.npy'))
ids['trainrestval'] = (ids['train'],
np.load(os.path.join(capdir, 'coco_restval_ids.npy')))
if use_restval:
roots['train'] = roots['trainrestval']
ids['train'] = ids['trainrestval']
elif 'f30k' == name:
imgdir = os.path.join(path, 'images')
cap = os.path.join(path, 'dataset_flickr30k.json')
roots['train'] = {'img': imgdir, 'cap': cap}
roots['val'] = {'img': imgdir, 'cap': cap}
roots['test'] = {'img': imgdir, 'cap': cap}
ids = {'train': None, 'val': None, 'test': None}
elif name in ['coco_butd', 'f30k_butd']:
imgdir = os.path.join(path, 'precomp')
cap = os.path.join(path, 'precomp')
roots['train'] = {'img': imgdir, 'cap': cap}
roots['test'] = {'img': imgdir, 'cap': cap}
roots['val'] = {'img': imgdir, 'cap': cap}
ids = {'train': None, 'val': None, 'test': None}
return roots, ids
def tokenize(sentence, vocab, drop_prob):
# Convert sentence (string) to word ids.
def caption_augmentation(tokens):
idxs = []
for t in tokens:
prob = random.random()
if prob < drop_prob:
prob /= drop_prob
if prob < 0.5:
idxs += [vocab('<mask>')]
elif prob < 0.6:
idxs += [random.randrange(len(vocab))]
else:
idxs += [vocab(t)]
return idxs
if sys.version_info.major > 2:
tokens = nltk.tokenize.word_tokenize(str(sentence).lower())
else:
tokens = nltk.tokenize.word_tokenize(str(sentence).lower().decode('utf-8'))
return torch.Tensor(
[vocab('<start>')] + caption_augmentation(tokens) + [vocab('<end>')]
)
class CocoDataset(data.Dataset):
def __init__(self, root, json, vocab, split, transform=None, ids=None, drop_prob=0):
"""
Args:
root: image directory.
json: coco annotation file path.
vocab: vocabulary wrapper.
transform: transformer for image.
"""
self.root = root
# when using `restval`, two json files are needed
if isinstance(json, tuple):
self.coco = (COCO(json[0]), COCO(json[1]))
else:
self.coco = (COCO(json),)
self.root = (root,)
# if ids provided by get_paths, use split-specific ids
self.ann_ids = list(self.coco.anns.keys()) if ids is None else ids
if not isinstance(self.ann_ids, tuple):
self.ann_ids = (self.ann_ids, [])
self.vocab = vocab
self.transform = transform
self.drop_prob = drop_prob
# if `restval` data is to be used, record the break point for ids
self.ann_bp = len(self.ann_ids[0])
self.ann_ids = list(self.ann_ids[0]) + list(self.ann_ids[1])
from collections import defaultdict
self.img_id_to_ann_ids = (defaultdict(list), defaultdict(list))
for i, ann_id in enumerate(self.ann_ids):
is_beyond_bp = int(i >= self.ann_bp)
coco, root, img_id_to_ann_ids =\
self.coco[is_beyond_bp], self.root[is_beyond_bp], self.img_id_to_ann_ids[is_beyond_bp]
img_id = coco.anns[ann_id]['image_id']
img_id_to_ann_ids[img_id].append(ann_id)
self.img_ids = (list(self.img_id_to_ann_ids[0].keys()), list(self.img_id_to_ann_ids[1].keys()))
self.img_bp = len(self.img_ids[0])
self.img_ids = self.img_ids[0] + self.img_ids[1]
print(self.img_bp, self.ann_bp, len(self.img_ids), len(self.ann_ids))
def __len__(self):
return len(self.img_ids)
def __getitem__(self, index):
vocab = self.vocab
ann_ids, anns, path, image = self.get_raw_item(index)
if self.transform is not None:
image = self.transform(image)
anns = [tokenize(ann, vocab, self.drop_prob) for ann in anns]
return image, anns, index, ann_ids
def get_raw_item(self, index):
is_beyond_bp = int(index >= self.img_bp)
coco, root, img_id_to_ann_ids = \
self.coco[is_beyond_bp], self.root[is_beyond_bp], self.img_id_to_ann_ids[is_beyond_bp]
img_id = self.img_ids[index]
ann_ids = img_id_to_ann_ids[img_id]
assert len(ann_ids) == 5
anns = [coco.anns[i]['caption'] for i in ann_ids]
path = coco.loadImgs(img_id)[0]['file_name']
image = Image.open(os.path.join(root, path)).convert('RGB')
return ann_ids, anns, path, image
class CocoDatasetBert(data.Dataset):
def __init__(self, root, json, vocab, split, transform=None, ids=None, drop_prob=0):
"""
Args:
root: image directory.
json: coco annotation file path.
vocab: vocabulary wrapper.
transform: transformer for image.
"""
self.root = root
self.train = split == 'train'
# when using `restval`, two json files are needed
if isinstance(json, tuple):
self.coco = (COCO(json[0]), COCO(json[1]))
else:
self.coco = (COCO(json),)
self.root = (root,)
# if ids provided by get_paths, use split-specific ids
self.ann_ids = list(self.coco.anns.keys()) if ids is None else ids
if not isinstance(self.ann_ids, tuple):
self.ann_ids = (self.ann_ids, [])
self.transform = transform
self.drop_prob = drop_prob
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.vocab = self.tokenizer.vocab
# if `restval` data is to be used, record the break point for ids
self.ann_bp = len(self.ann_ids[0])
self.ann_ids = list(self.ann_ids[0]) + list(self.ann_ids[1])
from collections import defaultdict
self.img_id_to_ann_ids = (defaultdict(list), defaultdict(list))
for i, ann_id in enumerate(self.ann_ids):
is_beyond_bp = int(i >= self.ann_bp)
coco, root, img_id_to_ann_ids =\
self.coco[is_beyond_bp], self.root[is_beyond_bp], self.img_id_to_ann_ids[is_beyond_bp]
img_id = coco.anns[ann_id]['image_id']
img_id_to_ann_ids[img_id].append(ann_id)
self.img_ids = (list(self.img_id_to_ann_ids[0].keys()), list(self.img_id_to_ann_ids[1].keys()))
self.img_bp = len(self.img_ids[0])
self.img_ids = self.img_ids[0] + self.img_ids[1]
print(self.img_bp, self.ann_bp, len(self.img_ids), len(self.ann_ids))
def __len__(self):
return len(self.img_ids)
def __getitem__(self, index):
vocab = self.vocab
ann_ids, anns, path, image = self.get_raw_item(index)
if self.transform is not None:
image = self.transform(image)
anns = [process_caption_bert(ann, self.tokenizer, self.drop_prob, self.train) for ann in anns]
return image, anns, index, ann_ids
def get_raw_item(self, index):
is_beyond_bp = int(index >= self.img_bp)
coco, root, img_id_to_ann_ids = \
self.coco[is_beyond_bp], self.root[is_beyond_bp], self.img_id_to_ann_ids[is_beyond_bp]
img_id = self.img_ids[index]
ann_ids = img_id_to_ann_ids[img_id]
assert len(ann_ids) == 5
anns = [coco.anns[i]['caption'] for i in ann_ids]
path = coco.loadImgs(img_id)[0]['file_name']
image = Image.open(os.path.join(root, path)).convert('RGB')
return ann_ids, anns, path, image
class CocoDatasetTest(data.Dataset):
def __init__(self, root, json, vocab, split, transform=None, ids=None, drop_prob=0):
"""
Args:
root: image directory.
json: coco annotation file path.
vocab: vocabulary wrapper.
transform: transformer for image.
"""
self.root = root
# when using `restval`, two json files are needed
if isinstance(json, tuple):
self.coco = (COCO(json[0]), COCO(json[1]))
else:
self.coco = (COCO(json),)
self.root = (root,)
# if ids provided by get_paths, use split-specific ids
self.ids = list(self.coco.anns.keys()) if ids is None else ids
self.vocab = vocab
self.transform = transform
self.drop_prob = drop_prob
# if `restval` data is to be used, record the break point for ids
if isinstance(self.ids, tuple):
self.bp = len(self.ids[0])
self.ids = list(self.ids[0]) + list(self.ids[1])
else:
self.bp = len(self.ids)
def __len__(self):
return len(self.ids)
def __getitem__(self, index):
vocab = self.vocab
root, sentence, img_id, path, image = self.get_raw_item(index)
if self.transform is not None:
image = self.transform(image)
target = tokenize(sentence, vocab, self.drop_prob)
return image, target, index, img_id
def get_raw_item(self, index):
if index < self.bp:
coco, root = self.coco[0], self.root[0]
else:
coco, root = self.coco[1], self.root[1]
ann_id = self.ids[index]
sentence = coco.anns[ann_id]['caption']
img_id = coco.anns[ann_id]['image_id']
path = coco.loadImgs(img_id)[0]['file_name']
image = Image.open(os.path.join(root, path)).convert('RGB')
return root, sentence, img_id, path, image
class CocoDatasetBertTest(data.Dataset):
def __init__(self, root, json, vocab, split, transform=None, ids=None, drop_prob=0):
"""
Args:
root: image directory.
json: coco annotation file path.
vocab: vocabulary wrapper.
transform: transformer for image.
"""
self.root = root
self.train = split == 'train'
# when using `restval`, two json files are needed
if isinstance(json, tuple):
self.coco = (COCO(json[0]), COCO(json[1]))
else:
self.coco = (COCO(json),)
self.root = (root,)
# if ids provided by get_paths, use split-specific ids
self.ids = list(self.coco.anns.keys()) if ids is None else ids
self.transform = transform
self.drop_prob = drop_prob
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.vocab = self.tokenizer.vocab
# if `restval` data is to be used, record the break point for ids
if isinstance(self.ids, tuple):
self.bp = len(self.ids[0])
self.ids = list(self.ids[0]) + list(self.ids[1])
else:
self.bp = len(self.ids)
def __len__(self):
return len(self.ids)
def __getitem__(self, index):
vocab = self.vocab
root, sentence, img_id, path, image = self.get_raw_item(index)
if self.transform is not None:
image = self.transform(image)
target = process_caption_bert(sentence, self.tokenizer, self.drop_prob, self.train)
return image, target, index, img_id
def get_raw_item(self, index):
if index < self.bp:
coco, root = self.coco[0], self.root[0]
else:
coco, root = self.coco[1], self.root[1]
ann_id = self.ids[index]
sentence = coco.anns[ann_id]['caption']
img_id = coco.anns[ann_id]['image_id']
path = coco.loadImgs(img_id)[0]['file_name']
image = Image.open(os.path.join(root, path)).convert('RGB')
return root, sentence, img_id, path, image
class FlickrDataset(data.Dataset):
"""
Dataset loader for Flickr30k datasets.
"""
def __init__(self, root, json, split, vocab, transform=None, drop_prob=0):
self.root = root
self.vocab = vocab
self.split = split
self.transform = transform
self.drop_prob = drop_prob
self.dataset = jsonmod.load(open(json, 'r'))['images']
"""
self.dataset is a list of dictionary with keys like..
'sentids'
'imgid'
'sentences' : list[dict]
tokens'
raw'
imgid'
sentid'
'split'
'filename'
"""
self.ids = []
for i, d in enumerate(self.dataset):
self.ids += [i] if d['split'] == split else []
def __getitem__(self, index):
"""This function returns a tuple that is further passed to collate_fn
"""
vocab = self.vocab
root = self.root
ann_id = self.ids[index]
img_id = self.ids[index]
captions = [c['raw'] for c in self.dataset[img_id]['sentences']]
img_path = os.path.join(root, self.dataset[img_id]['filename'])
image = Image.open(img_path).convert('RGB')
if self.transform is not None:
image = self.transform(image)
captions = [tokenize(c, vocab, self.drop_prob) for c in captions]
return image, captions, index, img_id
def __len__(self):
return len(self.ids)
class FlickrDatasetBert(data.Dataset):
"""
Dataset loader for Flickr30k datasets.
"""
def __init__(self, root, json, split, vocab, transform=None, drop_prob=0):
self.root = root
self.train = split == 'train'
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.vocab = self.tokenizer.vocab
self.split = split
self.transform = transform
self.drop_prob = drop_prob
self.dataset = jsonmod.load(open(json, 'r'))['images']
"""
self.dataset is a list of dictionary with keys like..
'sentids'
'imgid'
'sentences' : list[dict]
tokens'
raw'
imgid'
sentid'
'split'
'filename'
"""
self.ids = []
for i, d in enumerate(self.dataset):
self.ids += [i] if d['split'] == split else []
def __getitem__(self, index):
"""This function returns a tuple that is further passed to collate_fn
"""
vocab = self.vocab
root = self.root
ann_id = self.ids[index]
img_id = self.ids[index]
captions = [c['raw'] for c in self.dataset[img_id]['sentences']]
img_path = os.path.join(root, self.dataset[img_id]['filename'])
image = Image.open(img_path).convert('RGB')
if self.transform is not None:
image = self.transform(image)
captions = [process_caption_bert(c, self.tokenizer, self.drop_prob, self.train) for c in captions]
return image, captions, index, img_id
def __len__(self):
return len(self.ids)
class FlickrDatasetTest(data.Dataset):
"""
Dataset loader for Flickr30k datasets.
"""
def __init__(self, root, json, split, vocab, transform=None, drop_prob=0):
self.root = root
self.vocab = vocab
self.split = split
self.transform = transform
self.drop_prob = drop_prob
self.dataset = jsonmod.load(open(json, 'r'))['images']
self.ids = []
for i, d in enumerate(self.dataset):
if d['split'] == split:
self.ids += [(i, x) for x in range(len(d['sentences']))]
def __getitem__(self, index):
"""This function returns a tuple that is further passed to collate_fn
"""
vocab = self.vocab
root = self.root
ann_id = self.ids[index]
img_id = ann_id[0]
caption = self.dataset[img_id]['sentences'][ann_id[1]]['raw']
path = self.dataset[img_id]['filename']
image = Image.open(os.path.join(root, path)).convert('RGB')
if self.transform is not None:
image = self.transform(image)
target = tokenize(caption, vocab, self.drop_prob)
return image, target, index, img_id
def __len__(self):
return len(self.ids)
def get_raw_item(self, index):
root = self.root
ann_id = self.ids[index]
img_id = ann_id[0]
sentence = self.dataset[img_id]['sentences'][ann_id[1]]['raw']
path = self.dataset[img_id]['filename']
return root, sentence, None, path, None
class FlickrDatasetBertTest(data.Dataset):
"""
Dataset loader for Flickr30k datasets.
"""
def __init__(self, root, json, split, vocab, transform=None, drop_prob=0):
self.root = root
self.train = split == 'train'
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.vocab = self.tokenizer.vocab
self.split = split
self.transform = transform
self.drop_prob = drop_prob
self.dataset = jsonmod.load(open(json, 'r'))['images']
self.ids = []
for i, d in enumerate(self.dataset):
if d['split'] == split:
self.ids += [(i, x) for x in range(len(d['sentences']))]
def __getitem__(self, index):
"""This function returns a tuple that is further passed to collate_fn
"""
vocab = self.vocab
root = self.root
ann_id = self.ids[index]
img_id = ann_id[0]
caption = self.dataset[img_id]['sentences'][ann_id[1]]['raw']
path = self.dataset[img_id]['filename']
image = Image.open(os.path.join(root, path)).convert('RGB')
if self.transform is not None:
image = self.transform(image)
target = process_caption_bert(caption, self.tokenizer, self.drop_prob, self.train)
return image, target, index, img_id
def __len__(self):
return len(self.ids)
def get_raw_item(self, index):
root = self.root
ann_id = self.ids[index]
img_id = ann_id[0]
sentence = self.dataset[img_id]['sentences'][ann_id[1]]['raw']
path = self.dataset[img_id]['filename']
return root, sentence, None, path, None
class PrecompRegionDataset(data.Dataset):
"""
Load precomputed captions and image features for COCO or Flickr
"""
def __init__(self, data_path, data_name, split, vocab, i_drop_prob, c_drop_prob):
# FIXME Note that below assertion is essental to prevent using
# fast dataset on .npy file with reduduncy (eg. dev.npy, test.npy, testall.npy)
# This class should be used only with train dataset.
assert split == 'train'
self.vocab = vocab
self.train = split == 'train'
self.data_path = data_path
self.data_name = data_name
self.i_drop_prob = i_drop_prob
self.c_drop_prob = c_drop_prob
loc_cap = data_path
loc_image = data_path
# Captions
self.captions = []
import time
print('Loading captions from .txt')
start = time.time()
with open(os.path.join(loc_cap, '%s_caps.txt' % split), 'r') as f:
for line in f:
self.captions.append(line.strip())
print('take:', time.time() - start)
print('Loading images from .npy')
start = time.time()
self.images = np.load(os.path.join(loc_image, '%s_ims.npy' % split), mmap_mode='r')
print('take:', time.time() - start)
self.length = len(self.images)
num_images = len(self.images)
# rkiros data has redundancy in images, we divide by 5, 10crop doesn't
# if num_images != self.length:
# self.im_div = 5
# else:
# self.im_div = 1
# the development set for coco is large and so validation would be slow
if split == 'dev':
self.length = 5000
def __getitem__(self, index):
# handle the image redundancy
captions = self.captions[index*5:(index+1)*5]
# Convert caption (string) to word ids (with Size Augmentation at training time).
targets = [tokenize(c, self.vocab, self.c_drop_prob) for c in captions]
image = self.images[index]
if self.train:
# Size augmentation on region features.
num_features = image.shape[0]
rand_list = np.random.rand(num_features)
image = image[np.where(rand_list > self.i_drop_prob)]
image = torch.tensor(image)
return image, targets, index, None
def __len__(self):
return self.length
class PrecompRegionDatasetTest(data.Dataset):
"""
Load precomputed captions and image features for COCO or Flickr
"""
def __init__(self, data_path, data_name, split, vocab, i_drop_prob, c_drop_prob):
self.vocab = vocab
self.train = split == 'train'
self.data_path = data_path
self.data_name = data_name
self.i_drop_prob = i_drop_prob
self.c_drop_prob = c_drop_prob
loc_cap = data_path
loc_image = data_path
# Captions
self.captions = []
import time
print('Loading captions from .txt')
start = time.time()
with open(os.path.join(loc_cap, '%s_caps.txt' % split), 'r') as f:
for line in f:
self.captions.append(line.strip())
print('take:', time.time() - start)
print('Loading images from .npy')
start = time.time()
self.images = np.load(os.path.join(loc_image, '%s_ims.npy' % split), mmap_mode='r')
print('take:', time.time() - start)
self.length = len(self.captions)
num_images = len(self.images)
# rkiros data has redundancy in images, we divide by 5, 10crop doesn't
if num_images != self.length:
self.im_div = 5
else:
self.im_div = 1
# the development set for coco is large and so validation would be slow
if split == 'dev':
self.length = 5000
def __getitem__(self, index):
# handle the image redundancy
caption = self.captions[index]
# Convert caption (string) to word ids (with Size Augmentation at training time).
targets = tokenize(caption, self.vocab, self.c_drop_prob)
image = self.images[index//self.im_div]
if self.train:
# Size augmentation on region features.
num_features = image.shape[0]
idxs_to_drop = random.sample(range(num_features), int(self.i_drop_prob * num_features))
image = image[[(not i in idxs_to_drop) for i in range(num_features)]]
image = torch.tensor(image)
return image, targets, index, None
def __len__(self):
return self.length
def process_caption_bert(caption, tokenizer, drop_prob, train):
output_tokens = []
deleted_idx = []
tokens = tokenizer.basic_tokenizer.tokenize(caption)
for i, token in enumerate(tokens):
sub_tokens = tokenizer.wordpiece_tokenizer.tokenize(token)
prob = random.random()
if prob < drop_prob and train: # mask/remove the tokens only during training
prob /= drop_prob
# 50% randomly change token to mask token
if prob < 0.5:
for sub_token in sub_tokens:
output_tokens.append("[MASK]")
# 10% randomly change token to random token
elif prob < 0.6:
for sub_token in sub_tokens:
output_tokens.append(random.choice(list(tokenizer.vocab.keys())))
# -> rest 10% randomly keep current token
else:
for sub_token in sub_tokens:
output_tokens.append(sub_token)
deleted_idx.append(len(output_tokens) - 1)
else:
for sub_token in sub_tokens:
# no masking token (will be ignored by loss function later)
output_tokens.append(sub_token)
if len(deleted_idx) != 0:
output_tokens = [output_tokens[i] for i in range(len(output_tokens)) if i not in deleted_idx]
output_tokens = ['[CLS]'] + output_tokens + ['[SEP]']
target = tokenizer.convert_tokens_to_ids(output_tokens)
target = torch.Tensor(target)
return target
class PrecompRegionDatasetBERT(data.Dataset):
"""
Load precomputed captions and image features for COCO or Flickr
"""
def __init__(self, data_path, data_name, split, vocab, i_drop_prob, c_drop_prob):
# FIXME Note that below assertion is essental to prevent using
# fast dataset on .npy file with reduduncy (eg. dev.npy, test.npy, testall.npy)
# This class should be used only with train dataset.
assert split == 'train'
self.train = split == 'train'
self.data_path = data_path
self.data_name = data_name
self.i_drop_prob = i_drop_prob
self.c_drop_prob = c_drop_prob
loc_cap = data_path
loc_image = data_path
# Captions
self.captions = []
import time
print('Loading captions from .txt')
start = time.time()
with open(os.path.join(loc_cap, '%s_caps.txt' % split), 'r') as f:
for line in f:
self.captions.append(line.strip())
print('take:', time.time() - start)
print('Loading images from .npy')
start = time.time()
self.images = np.load(os.path.join(loc_image, '%s_ims.npy' % split), mmap_mode='r')
print('take:', time.time() - start)
self.length = len(self.images)
num_images = len(self.images)
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.vocab = self.tokenizer.vocab
# the development set for coco is large and so validation would be slow
if split == 'dev':
self.length = 5000
def __getitem__(self, index):
# handle the image redundancy
captions = self.captions[index*5:(index+1)*5]
# Convert caption (string) to word ids (with Size Augmentation at training time).
targets = [process_caption_bert(c, self.tokenizer, self.c_drop_prob, self.train) for c in captions]
image = self.images[index]
if self.train:
# Size augmentation on region features.
num_features = image.shape[0]
rand_list = np.random.rand(num_features)
image = image[np.where(rand_list > self.i_drop_prob)]
image = torch.tensor(image)
return image, targets, index, None
def __len__(self):
return self.length
class PrecompRegionDatasetBERTTest(data.Dataset):
"""
Load precomputed captions and image features for COCO or Flickr
"""
def __init__(self, data_path, data_name, split, vocab, i_drop_prob, c_drop_prob):
self.train = split == 'train'
self.data_path = data_path
self.data_name = data_name
self.i_drop_prob = i_drop_prob
self.c_drop_prob = c_drop_prob
loc_cap = data_path
loc_image = data_path
# Captions
self.captions = []
import time
print('Loading captions from .txt')
start = time.time()
with open(os.path.join(loc_cap, '%s_caps.txt' % split), 'r') as f:
for line in f:
self.captions.append(line.strip())
print('take:', time.time() - start)
print('Loading images from .npy')
start = time.time()
self.images = np.load(os.path.join(loc_image, '%s_ims.npy' % split), mmap_mode='r')
print('take:', time.time() - start)
self.length = len(self.captions)
num_images = len(self.images)
# rkiros data has redundancy in images, we divide by 5, 10crop doesn't
if num_images != self.length:
self.im_div = 5
else:
self.im_div = 1
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.vocab = self.tokenizer.vocab
# the development set for coco is large and so validation would be slow
if split == 'dev':
self.length = 5000
def __getitem__(self, index):
# handle the image redundancy
caption = self.captions[index]
# Convert caption (string) to word ids (with Size Augmentation at training time).
targets = process_caption_bert(caption, self.tokenizer, self.c_drop_prob, self.train)
image = self.images[index//self.im_div]
if self.train:
# Size augmentation on region features.
num_features = image.shape[0]
idxs_to_drop = random.sample(range(num_features), int(self.i_drop_prob * num_features))
image = image[[(not i in idxs_to_drop) for i in range(num_features)]]
image = torch.tensor(image)
return image, targets, index, None
def __len__(self):
return self.length
def collate_fn(data):
"""
input : List of tuples. Each tuple is a output of __getitem__ of the dataset
output : Collated tensor
"""
# Sort a data list by sentence length
images, sentences, img_ids, sentences_ids = zip(*data)
# compute the number of captions in each images and create match label from it
flatten_sentences = [sentence for img in list(sentences) for sentence in img]
flatten_sentences_len = [len(sentence) for sentence in flatten_sentences]
org_len, org_sen = flatten_sentences_len, flatten_sentences
caption_data = list(zip(flatten_sentences_len, flatten_sentences))
sorted_idx = sorted(range(len(caption_data)), key=lambda x: caption_data[x][0], reverse=True)
recovery_idx = sorted(range(len(caption_data)), key=lambda x: sorted_idx[x], reverse=False)
caption_data.sort(key=lambda x: x[0], reverse=True)
flatten_sentences_len, flatten_sentences = zip(*caption_data)
# Merge images (convert tuple of 3D tensor to 4D tensor)
images = torch.stack(images, 0)
# Merge sentences (convert tuple of 1D tensor to 2D tensor)
sentences_len = torch.tensor(flatten_sentences_len)
recovery_idx = torch.tensor(recovery_idx)
padded_sentences = torch.zeros(len(flatten_sentences), max(sentences_len)).long()
for i, cap in enumerate(flatten_sentences):
end = sentences_len[i]
padded_sentences[i, :end] = cap[:end]
return images, padded_sentences, sentences_len, recovery_idx, img_ids
def collate_fn_test(data):
"""Build mini-batch tensors from a list of (image, sentence) tuples.
Args:
data: list of (image, sentence) tuple.
- image: torch tensor of shape (3, 256, 256) or (?, 3, 256, 256).
- sentence: torch tensor of shape (?); variable length.
Returns:
images: torch tensor of shape (batch_size, 3, 256, 256) or
(batch_size, padded_length, 3, 256, 256).
targets: torch tensor of shape (batch_size, padded_length).
lengths: list; valid length for each padded sentence.
"""
# Sort a data list by sentence length
data.sort(key=lambda x: len(x[1]), reverse=True)
images, sentences, ids, img_ids = zip(*data)
# Merge images (convert tuple of 3D tensor to 4D tensor)
images = torch.stack(images, 0)
# Merge sentences (convert tuple of 1D tensor to 2D tensor)
cap_lengths = torch.tensor([len(cap) for cap in sentences])
targets = torch.zeros(len(sentences), max(cap_lengths)).long()
for i, cap in enumerate(sentences):
end = cap_lengths[i]
targets[i, :end] = cap[:end]
return images, targets, cap_lengths, ids
def collate_fn_butd(data):
"""
input : List of tuples. Each tuple is a output of __getitem__ of the dataset
output : Collated tensor
"""
# Sort a data list by sentence length
images, sentences, img_ids, sentences_ids = zip(*data)
# compute the number of captions in each images and create match label from it
flatten_sentences = [sentence for img in list(sentences) for sentence in img]
flatten_sentences_len = [len(sentence) for sentence in flatten_sentences]
org_len, org_sen = flatten_sentences_len, flatten_sentences
caption_data = list(zip(flatten_sentences_len, flatten_sentences))
sorted_idx = sorted(range(len(caption_data)), key=lambda x: caption_data[x][0], reverse=True)
recovery_idx = sorted(range(len(caption_data)), key=lambda x: sorted_idx[x], reverse=False)
caption_data.sort(key=lambda x: x[0], reverse=True)
flatten_sentences_len, flatten_sentences = zip(*caption_data)
# Merge sentences (convert tuple of 1D tensor to 2D tensor)
sentences_len = torch.tensor(flatten_sentences_len)
recovery_idx = torch.tensor(recovery_idx)
padded_sentences = torch.zeros(len(flatten_sentences), max(sentences_len)).long()
for i, cap in enumerate(flatten_sentences):
end = sentences_len[i]
padded_sentences[i, :end] = cap[:end]
# Merge images (convert tuple of 3D tensor to 4D tensor)
images_len = torch.tensor([len(img) for img in images])
padded_images = torch.zeros(len(images), max(images_len), images[0].shape[-1]).float()
for i, img in enumerate(images):
end = images_len[i]
padded_images[i, :end] = img[:end]
return padded_images, padded_sentences, images_len, sentences_len, recovery_idx, img_ids
def collate_fn_butd_test(data):
"""
input : List of tuples. Each tuple is a output of __getitem__ of the dataset
output : Collated tensor
"""
data.sort(key=lambda x: len(x[1]), reverse=True)
images, sentences, ids, img_ids = zip(*data)
# Merge sentences (convert tuple of 1D tensor to 2D tensor)
sentences_len = torch.tensor([len(cap) for cap in sentences])
padded_sentences = torch.zeros(len(sentences), max(sentences_len)).long()
for i, cap in enumerate(sentences):
end = sentences_len[i]
padded_sentences[i, :end] = cap[:end]
# Merge images (convert tuple of 3D tensor to 4D tensor)
images_len = torch.tensor([len(img) for img in images])
padded_images = torch.zeros(len(images), max(images_len), images[0].shape[-1]).float()
for i, img in enumerate(images):
end = images_len[i]
padded_images[i, :end] = img[:end]
return padded_images, padded_sentences, images_len, sentences_len, ids