-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
365 lines (272 loc) · 11.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import numpy as np
import pickle
def unique(seq):
seen = set()
seen_add = seen.add
return [x for x in seq if not (x in seen or seen_add(x))]
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def softmax(x, temperature):
exp_x = np.exp(x / temperature)
return exp_x / np.sum(exp_x)
# RNN
class TextRNN(object):
def __init__(self, hiddenLayers=300, sequenceLength=50):
# Hidden Layers
self.hiddenLayers = hiddenLayers
# Learning Rate
self.learningRate = 0.001
# Hidden State
self.h = {}
# Internal cursor
self.cursor = 0
# Sequence Length
self.sequenceLength = sequenceLength
def train(self, text, ngrams=7, delimiter=" "):
# Setup delimiter
self.delimiter = delimiter
# Split by delimiter
grams = text.split(delimiter) if delimiter != "" else list(text)
# Setup Data by Ngrams
self.data = [delimiter.join(grams[i:i+ngrams]) for i in range(len(grams))[::ngrams]]
# Get Unique Data
self.uniqueData = unique(self.data)
# Get Vocab Maps
self.indexToGram = {i:gram for i, gram in enumerate(self.uniqueData)}
self.gramToIndex = {gram:i for i, gram in enumerate(self.uniqueData)}
# Get vocab size
self.vocabSize = len(self.uniqueData)
# Setup Inputs
inputs = []
outputs = []
inputGrams = [self.gramToIndex[gram] for gram in self.data]
outputGrams = [self.gramToIndex[gram] for gram in self.data[1:]]
for i, inputGram in enumerate(inputGrams[0:-1]):
X = np.zeros((self.vocabSize, 1))
X[inputGram, 0] = 1
y = np.zeros((self.vocabSize, 1))
y[outputGrams[i], 0] = 1
inputs.append(X)
outputs.append(y)
self.inputs = inputs
self.outputs = outputs
# Input Weights
self.WXZ = np.random.randn(self.hiddenLayers, self.vocabSize) * 0.1 # Update Gate
self.WXR = np.random.randn(self.hiddenLayers, self.vocabSize) * 0.1 # Reset Gate
self.WXC = np.random.randn(self.hiddenLayers, self.vocabSize) * 0.1 # Candidate
# Hidden Layer Weights
self.WHZ = np.random.randn(self.hiddenLayers, self.hiddenLayers) * 0.1 # Update Gate
self.WHR = np.random.randn(self.hiddenLayers, self.hiddenLayers) * 0.1 # Reset Gate
self.WHC = np.random.randn(self.hiddenLayers, self.hiddenLayers) * 0.1 # Candidate Gate
# Biases
self.bC = np.zeros((self.hiddenLayers, 1)) # Candidate Gate
self.bR = np.zeros((self.hiddenLayers, 1)) # Reset Gate
self.bZ = np.zeros((self.hiddenLayers, 1)) # Update Gate
self.bY = np.zeros((self.vocabSize, 1)) # Output
# Output Layer Weights
self.WY = np.random.randn(self.vocabSize, self.hiddenLayers) * 0.1
# Cache for Update
self.dXZM = np.zeros_like(self.WXZ)
self.dXRM = np.zeros_like(self.WXR)
self.dXCM = np.zeros_like(self.WXC)
self.dHZM = np.zeros_like(self.WHZ)
self.dHRM = np.zeros_like(self.WHR)
self.dHCM = np.zeros_like(self.WHC)
self.dbZM = np.zeros_like(self.bZ)
self.dbRM = np.zeros_like(self.bR)
self.dbCM = np.zeros_like(self.bC)
self.dYM = np.zeros_like(self.WY)
self.dXZV = np.zeros_like(self.WXZ)
self.dXRV = np.zeros_like(self.WXR)
self.dXCV = np.zeros_like(self.WXC)
self.dHZV = np.zeros_like(self.WHZ)
self.dHRV = np.zeros_like(self.WHR)
self.dHCV = np.zeros_like(self.WHC)
self.dbZV = np.zeros_like(self.bZ)
self.dbRV = np.zeros_like(self.bR)
self.dbCV = np.zeros_like(self.bC)
self.dYV = np.zeros_like(self.WY)
def forward(self, X, hPrev, temperature=1.0):
# Update Gate
zbar = np.dot(self.WXZ, X) + np.dot(self.WHZ, hPrev) + self.bZ
z = sigmoid(zbar)
# Reset Gate
rbar = np.dot(self.WXR, X) + np.dot(self.WHR, hPrev) + self.bR
r = sigmoid(rbar)
# Candidate
cbar = np.dot(self.WXC, X) + np.dot(self.WHC, np.multiply(r, hPrev)) + self.bC
c = np.tanh(cbar)
# Hidden State
h = np.multiply(c, z) + np.multiply(hPrev, 1 - z)
# h = np.multiply(z, hPrev) + np.multiply((1 - z), c)
# Output
o = softmax(np.dot(self.WY, h) + self.bY, temperature)
return z, zbar, r, rbar, c, cbar, h, o
def step(self):
# Hidden State
self.h = {}
self.h[-1] = np.zeros((self.hiddenLayers, 1))
# Update Gates
z = {}
zbars = {}
# Reset Gates
r = {}
rbars = {}
# Candidates
c = {}
cbars = {}
# Inputs
x = {}
# Outputs
o = {}
# Target Indexes
targets = {}
# Timesteps to Unroll
totalLen = len(self.inputs)
if self.cursor + self.sequenceLength > totalLen:
self.cursor = 0
# Total Loss
loss = 0
for i in xrange(self.sequenceLength):
# Get inputs and outputs
X = self.inputs[self.cursor + i]
y = self.outputs[self.cursor + i]
# Move inputs forward through network
z[i], zbars[i], r[i], rbars[i], c[i], cbars[i], self.h[i], o[i] = self.forward(X, self.h[i - 1])
# Calculate loss
target = np.argmax(y)
loss += -np.log(o[i][target, 0])
x[i] = X
targets[i] = target
# Back Propagation
dXZ = np.zeros_like(self.WXZ)
dXR = np.zeros_like(self.WXR)
dXC = np.zeros_like(self.WXC)
dHZ = np.zeros_like(self.WHZ)
dHR = np.zeros_like(self.WHR)
dHC = np.zeros_like(self.WHC)
dbZ = np.zeros_like(self.bZ)
dbR = np.zeros_like(self.bR)
dbC = np.zeros_like(self.bC)
dbY = np.zeros_like(self.bY)
dY = np.zeros_like(self.WY)
dhnext = np.zeros_like(self.h[0])
dzbarnext = np.zeros_like(zbars[0])
drbarnext = np.zeros_like(rbars[0])
dcbarnext = np.zeros_like(cbars[0])
z[self.sequenceLength] = np.zeros_like(z[0])
r[self.sequenceLength] = np.zeros_like(r[0])
for i in reversed(xrange(self.sequenceLength)):
# Back Propagate Through Y
dSY = np.copy(o[i])
dSY[targets[i]] -= 1
dY += np.dot(dSY, self.h[i].T)
dbY += dSY
# Back Propagate Through H and X
dha = np.multiply(dhnext, 1 - z[i + 1]) # Through Update Gate
dhb = np.dot(self.WHR.T, drbarnext) # Weights into rbar
dhc = np.dot(self.WHZ.T, dzbarnext) # Weights into zbar
dhd = np.multiply(r[i + 1], np.dot(self.WHC.T, dcbarnext)) # Weights into cbar
dhe = np.dot(self.WY.T, dSY) # Weights at output
dh = dha + dhb + dhc + dhd + dhe
dcbar = np.multiply(np.multiply(dh, z[i]) , 1 - np.square(c[i]))
drbar = np.multiply(np.multiply(self.h[i - 1], np.dot(self.WHC.T, dcbar)), np.multiply(r[i] , (1 - r[i])))
dzbar = np.multiply(np.multiply(dh, (c[i] - self.h[i - 1])), np.multiply(z[i], (1 - z[i])))
dXZ += np.dot(dzbar, x[i].T)
dXR += np.dot(drbar, x[i].T)
dXC += np.dot(dcbar, x[i].T)
dHZ += np.dot(dzbar, self.h[i - 1].T)
dHR += np.dot(drbar, self.h[i - 1].T)
dHC += np.dot(dcbar, np.multiply(r[i], self.h[i - 1]).T)
dbZ += dzbar
dbR += drbar
dbC += dcbar
dhnext = dh
drbarnext = drbar
dzbarnext = dzbar
dcbarnext = dcbar
# Parameter Update (Adam)
for param, delta, m, v in zip([self.WXZ, self.WXR, self.WXC, self.WHZ, self.WHR, self.WHC, self.WY, self.bZ, self.bR, self.bC],
[dXZ, dXR, dXC, dHZ, dHR, dHC, dY, dbZ, dbR, dbC],
[self.dXZM, self.dXRM, self.dXCM, self.dHZM, self.dHRM, self.dHCM, self.dYM, self.dbZM, self.dbRM, self.dbCM],
[self.dXZV, self.dXRV, self.dXCV, self.dHZV, self.dHRV, self.dHCV, self.dYV, self.dbZV, self.dbRV, self.dbCV]):
m = 0.9 * m + 0.1 * delta
v = 0.99 * v + 0.01 * (delta ** 2)
param += -self.learningRate * m / (np.sqrt(v) + 1e-8)
# Update cursor
self.cursor += self.sequenceLength
return loss
def sample(self, num=100, temperature=1.0, start=False):
# Output
output = ""
# Sample hidden state
h = {}
h[-1] = np.zeros((self.hiddenLayers, 1))
# Sample Update Gate
z = {}
zbar = {}
# Sample Reset Gate
r = {}
rbar = {}
# Sample Candidate Gate
c = {}
cbar = {}
# Make inputs from seed
if start == False:
lastCursor = self.cursor - self.sequenceLength
seedIdx = lastCursor if lastCursor >= 0 else 0
seed = self.data[seedIdx]
else:
seedIdx = self.gramToIndex[start]
seed = start
X = np.zeros((self.vocabSize, 1))
X[self.gramToIndex[seed], 0] = 1
# Add seed to output
output += seed
# Generate sample
for i in xrange(num - 1):
# Move through network
z[i], zbar[i], r[i], rbar[i], c[i], cbar[i], h[i], prediction = self.forward(X, h[i - 1], temperature)
# Pick ngram using probabilities
idx = np.random.choice(range(self.vocabSize), p=prediction.ravel())
# Add to output
output += self.delimiter + self.indexToGram[idx]
# Update input to feed back in
X = np.zeros((self.vocabSize, 1))
X[idx, 0] = 1
return output
def run(self, iterations=1000, size=100, temperatures=[1.0], sampleFile=False, printSample=5, seed=False):
if sampleFile != False:
sampleFile = open(sampleFile, 'w')
for i in xrange(iterations):
loss = bot.step()
if i % printSample == 0:
for temperature in temperatures:
print '======= Temperature: ' + str(temperature) + ' ======='
sample = bot.sample(size, temperature, seed)
print sample
if(sampleFile != False):
sampleFile.write(sample + '\n\n\n')
print '\n'
print '======= Iteration ' + str(i + 1) + ' ======='
print '======= Samples Seen: ' + str(self.cursor) + ' ======='
print '======= Loss: ' + str(loss) + ' ======='
if sampleFile != False:
sampleFile.close()
def save(self, small=True):
savedObj = {item:value for item, value in self.__dict__.iteritems()}
if small == True:
for param in ["data", "uniqueData", "indexToGram", "gramToIndex", "inputs", "outputs"]:
del savedObj[param]
pickle.dump(savedObj, open("data/MODEL", "w+"))
def load(self, dump):
newSelf = pickle.load(dump)
for item, value in newSelf.iteritems():
setattr(self, item, value)
data = open('data/data.txt').read().lower()
bot = TextRNN()
bot.train(data, 1, '')
bot.load(open("data/MODEL"));
bot.run(size=50, temperatures=[0.5, 1.0], iterations=5000)
bot.save(True)
print bot.sample(1000, temperature=0.5, start='\n')