forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTensorOptions.h
787 lines (696 loc) · 26.5 KB
/
TensorOptions.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
#pragma once
#include <c10/core/Backend.h>
#include <c10/core/DefaultDtype.h>
#include <c10/core/Device.h>
#include <c10/core/DeviceType.h>
#include <c10/core/DispatchKey.h>
#include <c10/core/Layout.h>
#include <c10/core/MemoryFormat.h>
#include <c10/core/ScalarType.h>
#include <c10/core/ScalarTypeToTypeMeta.h>
#include <c10/macros/Export.h>
#include <c10/macros/Macros.h>
#include <c10/util/Exception.h>
#include <c10/util/Optional.h>
#include <cstdint>
#include <iosfwd>
#include <string>
#include <type_traits>
#include <utility>
namespace c10 {
DispatchKey computeDispatchKey(
c10::optional<ScalarType> dtype,
c10::optional<Layout> layout,
c10::optional<Device> device);
inline ScalarType dtype_or_default(c10::optional<ScalarType> dtype) {
return value_or_else(dtype, [] { return get_default_dtype_as_scalartype(); });
}
inline caffe2::TypeMeta dtype_or_default(
c10::optional<caffe2::TypeMeta> dtype) {
return value_or_else(dtype, [] { return get_default_dtype(); });
}
inline Layout layout_or_default(c10::optional<Layout> layout) {
return layout.value_or(kStrided);
}
inline Device device_or_default(c10::optional<Device> device) {
return value_or_else(device, [] { return Device(kCPU); });
}
inline bool pinned_memory_or_default(c10::optional<bool> pinned_memory) {
return pinned_memory.value_or(false);
}
/// A class to encapsulate construction axes of an Tensor. TensorOptions was
/// designed to support the Python style API for specifying construction options
/// on factory functions, e.g.,
///
/// torch.zeros(2, 3, dtype=torch.int32)
///
/// Because C++ doesn't natively support keyword arguments, there must be
/// another way of specifying keyword-like arguments. TensorOptions is a
/// builder class which can be used to construct this "dictionary" of keyword
/// arguments: functions which support TensorOptions conventionally take this
/// argument optionally as their last argument.
///
/// WARNING: In PyTorch, there are `torch::` variants of factory functions,
/// e.g., torch::zeros for at::zeros. These return Variables (while the
/// stock ATen functions return plain Tensors). If you mix these functions
/// up, you WILL BE SAD.
///
/// Rather than use the constructor of this class directly, you should prefer to
/// use the constructor functions, and then chain setter methods on top of them.
///
/// at::device(at::kCUDA).dtype(kInt)
/// at::dtype(at::kInt)
///
/// Additionally, anywhere a TensorOptions is expected, you can directly
/// pass at::kCUDA / at::kInt, and it will implicitly convert to a
/// TensorOptions.
///
/// Here are some recommended ways to create a 2x2 tensor of zeros
/// with certain properties. These all *implicitly* make use of
/// TensorOptions, even if they don't mention the class explicitly:
///
/// at::zeros({2,2}, at::kCUDA);
/// at::zeros({2,2}, at::kLong);
/// at::zeros({2,2}, at::device(at::kCUDA).dtype(at::kLong()));
/// at::zeros({2,2}, at::device({at::kCUDA, 1})); // place on device 1
/// at::zeros({2,2}, at::requires_grad());
///
/// NOTE [ TensorOptions Constructors ]
///
/// TensorOptions is like a dictionary with entries from the set:
/// {requires_grad, device, dtype, layout}, where each entry may be
/// unspecified (i.e., is optional). It is used to specify the properties of
/// tensors in many places both in C++ internal and API, e.g., tensor factory
/// methods like `at::empty({10}, options)`, tensor conversions like
/// `tensor.to(...)`, etc.
///
/// To provide a simple API that is consistent with Python, where one can do
/// `torch.empty(sizes, X)` with `X` being a `torch.device`, `torch.dtype`, or a
/// `torch.layout`, we want TensorOptions to be implicitly convertible from
/// `ScalarType dtype`, `Layout layout` and `Device device`. Therefore, we have
/// three implicit constructors from each of these three types.
///
/// This is sufficient for `ScalarType` and `Layout` as they are simple Enum
/// classes. However, `Device` is an ordinary class with implicit constructors
/// `Device(DeviceType, DeviceIndex = -1)` and `Device(std::string)` to be
/// consistent with Python API, where strings are treated as equivalent with a
/// `torch.device` object (e.g., "cuda:1" can be passed to everywhere a
/// `torch.device("cuda:1")` is accepted). To support the syntax
/// `at::empty({10}, {kCUDA, 1})` and `tensor.to(kCUDA)`, we need to make sure
/// that `TensorOptions` is implicitly constructible with any arguments that a
/// `Device` can constructed from. So we have,
///
/// /* implicit */ TensorOptions(T&& device) : TensorOptions() {
/// this->set_device(device);
/// }
///
/// template <typename... Args,
/// typename = std::enable_if_t<std::is_constructible<Device,
/// Args&&...>::value>>
/// /* implicit */ TensorOptions(Args&&... args)
/// : TensorOptions(Device(std::forward<Args>(args)...)) {}
///
///
/// But this will be problematic. Consider this: `TensorOptions({kCUDA, 1})`.
/// Compiler will complain about ambiguity between the copy constructor and the
/// `Device` constructor because `{kCUDA, 1}` can be converted to both a
/// `TensorOption` and a `Device`.
///
/// To get around this, we templatize the `Device` constructor. Since overload
/// resolution is done before template resolution, our problem is solved.
DispatchKey computeDispatchKey(
optional<ScalarType> dtype,
optional<Layout> layout,
optional<Device> device);
struct C10_API TensorOptions {
TensorOptions()
: requires_grad_(false),
pinned_memory_(false),
has_device_(false),
has_dtype_(false),
has_layout_(false),
has_requires_grad_(false),
has_pinned_memory_(false),
has_memory_format_(false) {}
/// Constructs a `TensorOptions` object with the given layout.
/* implicit */ TensorOptions(Layout layout) : TensorOptions() {
this->set_layout(layout);
}
/// Constructs a `TensorOptions` object with the given device.
/// See NOTE [ TensorOptions Constructors ] on why this is templatized.
template <
typename T,
typename = std::enable_if_t<std::is_same_v<std::decay_t<T>, Device>>>
/* implicit */ TensorOptions(T&& device) : TensorOptions() {
this->set_device(std::forward<T>(device));
}
/// Constructs a `TensorOptions` object from arguments allowed in `Device`
/// constructors.
///
/// See NOTE [ TensorOptions Constructors ].
///
/// NB: Ideally we only allow implicit constructors here. But there is no easy
/// way to detect them. So we have this one that allows explicit
/// constructors too.
template <
typename... Args,
typename = std::enable_if_t<std::is_constructible_v<Device, Args&&...>>>
/* implicit */ TensorOptions(Args&&... args)
: TensorOptions(Device(std::forward<Args>(args)...)) {}
/// Constructs a `TensorOptions` object with the given dtype.
/* implicit */ TensorOptions(caffe2::TypeMeta dtype) : TensorOptions() {
this->set_dtype(dtype);
}
/// legacy constructor to support ScalarType
/* implicit */ TensorOptions(ScalarType dtype) : TensorOptions() {
this->set_dtype(dtype);
}
/// Constructs a `TensorOptions` object with the given memory format.
/* implicit */ TensorOptions(MemoryFormat memory_format) : TensorOptions() {
set_memory_format(memory_format);
}
/// Return a copy of `TensorOptions` with `device` set to the given one, or
/// cleared if `device` is `nullopt`.
C10_NODISCARD TensorOptions
device(c10::optional<Device> device) const noexcept {
TensorOptions r = *this;
r.set_device(device);
return r;
}
/// Return a copy of `TensorOptions` with `device` set to the given one.
/// (This overload ensures that variadic template c10::optional constructor
/// for Device work correctly.)
template <typename... Args>
C10_NODISCARD TensorOptions device(Args&&... args) const noexcept {
return device(
c10::optional<Device>(std::in_place, std::forward<Args>(args)...));
}
/// Return a copy of `TensorOptions`, but with device set to CUDA, and the
/// device index set to the given one.
///
/// TODO: This function encourages bad behavior (assuming CUDA is
/// the only device that matters). Get rid of it / rename it.
C10_NODISCARD TensorOptions
device_index(c10::DeviceIndex device_index) const noexcept {
return device(Device::Type::CUDA, device_index);
}
/// Return a copy of `TensorOptions` with `dtype` set to the given one.
C10_NODISCARD TensorOptions
dtype(c10::optional<caffe2::TypeMeta> dtype) const noexcept {
TensorOptions r = *this;
r.set_dtype(dtype);
return r;
}
// legacy function to support ScalarType
C10_NODISCARD TensorOptions
dtype(c10::optional<ScalarType> dtype) const noexcept {
TensorOptions r = *this;
r.set_dtype(dtype);
return r;
}
// Since dtype is taken...
template <typename T>
TensorOptions& dtype() {
dtype_ = caffe2::TypeMeta::Make<T>();
has_dtype_ = true;
return *this;
}
/// Sets the layout of the `TensorOptions`.
C10_NODISCARD TensorOptions
layout(c10::optional<Layout> layout) const noexcept {
TensorOptions r = *this;
r.set_layout(layout);
return r;
}
/// Sets the `requires_grad` property of the `TensorOptions`.
C10_NODISCARD TensorOptions
requires_grad(c10::optional<bool> requires_grad) const noexcept {
TensorOptions r = *this;
r.set_requires_grad(requires_grad);
return r;
}
/// Sets the `pinned_memory` property on the `TensorOptions`.
C10_NODISCARD TensorOptions
pinned_memory(c10::optional<bool> pinned_memory) const noexcept {
TensorOptions r = *this;
r.set_pinned_memory(pinned_memory);
return r;
}
/// Sets the `memory_format` property on `TensorOptions`.
C10_NODISCARD TensorOptions
memory_format(c10::optional<MemoryFormat> memory_format) const noexcept {
TensorOptions r = *this;
r.set_memory_format(memory_format);
return r;
}
/// Returns the device of the `TensorOptions`.
Device device() const noexcept {
return device_or_default(device_opt());
}
/// Returns whether the device is specified.
bool has_device() const noexcept {
return has_device_;
}
/// Returns the device of the `TensorOptions`, or `c10::nullopt` if
/// device is not specified.
c10::optional<Device> device_opt() const noexcept {
return has_device_ ? c10::make_optional(device_) : c10::nullopt;
}
/// Returns the device index of the `TensorOptions`.
c10::DeviceIndex device_index() const noexcept {
return device().index();
}
/// Returns the dtype of the `TensorOptions`.
caffe2::TypeMeta dtype() const noexcept {
return dtype_or_default(dtype_opt());
}
/// Returns whether the dtype is specified.
bool has_dtype() const noexcept {
return has_dtype_;
}
/// Returns the dtype of the `TensorOptions`, or `c10::nullopt` if
/// device is not specified.
c10::optional<caffe2::TypeMeta> dtype_opt() const noexcept {
return has_dtype_ ? c10::make_optional(dtype_) : c10::nullopt;
}
/// Returns the layout of the `TensorOptions`.
Layout layout() const noexcept {
return layout_or_default(layout_opt());
}
/// Returns whether the layout is specified.
bool has_layout() const noexcept {
return has_layout_;
}
/// Returns the layout of the `TensorOptions`, or `c10::nullopt` if
/// layout is not specified.
c10::optional<Layout> layout_opt() const noexcept {
return has_layout_ ? c10::make_optional(layout_) : c10::nullopt;
}
/// Returns the `requires_grad` property of the `TensorOptions`.
bool requires_grad() const noexcept {
return has_requires_grad_ ? requires_grad_ : false;
}
/// Returns whether the `requires_grad` is specified.
bool has_requires_grad() const noexcept {
return has_requires_grad_;
}
/// Returns the `requires_grad` property of the `TensorOptions`, or
/// `c10::nullopt` if `requires_grad` is not specified.
c10::optional<bool> requires_grad_opt() const noexcept {
return has_requires_grad_ ? c10::make_optional(requires_grad_)
: c10::nullopt;
}
/// Returns the `pinned_memory` property of the `TensorOptions`.
bool pinned_memory() const noexcept {
return pinned_memory_or_default(pinned_memory_opt());
}
/// Returns whether the `pinned_memory` is specified.
bool has_pinned_memory() const noexcept {
return has_pinned_memory_;
}
/// Returns if the layout is sparse
bool is_sparse() const {
return layout_ == c10::Layout::Sparse;
}
/// Returns if the layout is sparse CSR, deprecated, use
/// is_sparse_compressed() instead
bool is_sparse_csr() const {
return layout_ == c10::Layout::SparseCsr;
}
bool is_sparse_compressed() const {
return layout_ == c10::Layout::SparseCsr ||
layout_ == c10::Layout::SparseCsc ||
layout_ == c10::Layout::SparseBsr || layout_ == c10::Layout::SparseBsc;
}
// For compatibility with legacy tensor.type() comparisons
bool type_equal(const TensorOptions& other) const {
return computeDispatchKey() == other.computeDispatchKey() &&
typeMetaToScalarType(dtype_) == typeMetaToScalarType(other.dtype());
}
/// Returns the `pinned_memory` property of the `TensorOptions`, or
/// `c10::nullopt` if `pinned_memory` is not specified.
c10::optional<bool> pinned_memory_opt() const noexcept {
return has_pinned_memory_ ? c10::make_optional(pinned_memory_)
: c10::nullopt;
}
/// Returns whether the `memory_layout` is specified
bool has_memory_format() const noexcept {
return has_memory_format_;
}
// NB: memory_format() getter is PURPOSELY not defined, as the default
// behavior of memory_format varies from function to function.
/// Returns the `memory_layout` property of `TensorOptions, or
/// `c10::nullopt` if `memory_format` is not specified.
c10::optional<MemoryFormat> memory_format_opt() const noexcept {
return has_memory_format_ ? c10::make_optional(memory_format_)
: c10::nullopt;
}
// Resolves the ATen backend specified by the current construction axes.
// TODO: Deprecate this
Backend backend() const {
return at::dispatchKeyToBackend(computeDispatchKey());
}
/// Return the right-biased merge of two TensorOptions. This has the
/// effect of overwriting settings from self with specified options
/// of options.
///
/// NB: This merging operation does NOT respect device merges.
/// For example, if you device({kCUDA, 1}).merge_in(kCUDA)
/// you will get kCUDA in the end! Functions like Tensor.new_empty
/// ensure the right device is selected anyway by way of a
/// device guard.
///
TensorOptions merge_in(TensorOptions options) const noexcept {
TensorOptions merged = *this;
if (options.has_device())
merged.set_device(options.device_opt());
if (options.has_dtype())
merged.set_dtype(options.dtype_opt());
if (options.has_layout())
merged.set_layout(options.layout_opt());
// NB: requires grad is right biased; not a logical AND/OR!
if (options.has_requires_grad())
merged.set_requires_grad(options.requires_grad_opt());
if (options.has_pinned_memory())
merged.set_pinned_memory(options.pinned_memory_opt());
if (options.has_memory_format())
merged.set_memory_format(options.memory_format_opt());
return merged;
}
// TODO remove after TensorOptions rationalization
TensorOptions merge_memory_format(
c10::optional<MemoryFormat> optional_memory_format) const noexcept {
TensorOptions merged = *this;
if (optional_memory_format.has_value()) {
merged.set_memory_format(*optional_memory_format);
}
return merged;
}
// INVARIANT: computeDispatchKey returns only the subset of dispatch keys for
// which dispatchKeyToBackend is injective, if it is defined at all (for
// the most part, this just means that this function never returns an
// Autograd key)
DispatchKey computeDispatchKey() const {
return c10::computeDispatchKey(
optTypeMetaToScalarType(dtype_opt()), layout_opt(), device_opt());
}
private:
// These methods are currently private because I'm not sure if it's wise
// to actually publish them. They are methods because I need them in
// the constructor and the functional API implementation.
//
// If you really, really need it, you can make these public, but check if you
// couldn't just do what you need with the functional API. Similarly, these
// methods are not chainable, because if you wanted chaining, you probably
// want to use the functional API instead. (It's probably OK to make
// these chainable, because these functions are all explicitly annotated
// with a ref-qualifier, the trailing &, that makes them illegal to call
// on temporaries.)
/// Mutably set the device of `TensorOptions`.
void set_device(c10::optional<Device> device) & noexcept {
if (device) {
device_ = *device;
has_device_ = true;
} else {
has_device_ = false;
}
}
/// Mutably set the dtype of `TensorOptions`.
void set_dtype(c10::optional<caffe2::TypeMeta> dtype) & noexcept {
if (dtype) {
dtype_ = *dtype;
has_dtype_ = true;
} else {
has_dtype_ = false;
}
}
// legacy function to support ScalarType
void set_dtype(c10::optional<ScalarType> dtype) & noexcept {
if (dtype) {
dtype_ = scalarTypeToTypeMeta(*dtype);
has_dtype_ = true;
} else {
has_dtype_ = false;
}
}
/// Mutably set the layout of `TensorOptions`.
void set_layout(c10::optional<Layout> layout) & noexcept {
if (layout) {
layout_ = *layout;
has_layout_ = true;
} else {
has_layout_ = false;
}
}
/// Mutably set the `requires_grad` property of `TensorOptions`.
void set_requires_grad(c10::optional<bool> requires_grad) & noexcept {
if (requires_grad) {
requires_grad_ = *requires_grad;
has_requires_grad_ = true;
} else {
has_requires_grad_ = false;
}
}
/// Mutably set the `pinned_memory` property of `TensorOptions`.
void set_pinned_memory(c10::optional<bool> pinned_memory) & noexcept {
if (pinned_memory) {
pinned_memory_ = *pinned_memory;
has_pinned_memory_ = true;
} else {
has_pinned_memory_ = false;
}
}
/// Mutably set the `memory_Format` property of `TensorOptions`.
void set_memory_format(c10::optional<MemoryFormat> memory_format) & noexcept {
if (memory_format) {
memory_format_ = *memory_format;
has_memory_format_ = true;
} else {
has_memory_format_ = false;
}
}
// WARNING: If you edit TensorOptions to add more options, you
// may need to adjust the implementation of Tensor::options.
// The criteria for whether or not Tensor::options must be adjusted
// is whether or not the new option you added should preserved
// by functions such as empty_like(); if it should be preserved,
// you must adjust options().
//
// TODO: MemoryFormat is not implemented in this way
// NB: We didn't use c10::optional here, because then we can't pack
// the has_***_ boolean fields.
Device device_ = at::kCPU; // 16-bit
caffe2::TypeMeta dtype_ = caffe2::TypeMeta::Make<float>(); // 16-bit
Layout layout_ = at::kStrided; // 8-bit
MemoryFormat memory_format_ = MemoryFormat::Contiguous; // 8-bit
// Bitmask required here to get this to fit inside 32 bits (or even 64 bits,
// for that matter)
bool requires_grad_ : 1;
bool pinned_memory_ : 1;
bool has_device_ : 1;
bool has_dtype_ : 1;
bool has_layout_ : 1;
bool has_requires_grad_ : 1;
bool has_pinned_memory_ : 1;
bool has_memory_format_ : 1;
};
// We should aspire to fit in one machine-size word; but a size greater than two
// words is too much. (We are doing terribly on 32-bit archs, where we require
// three machine size words to store tensor options. Eek!)
static_assert(
sizeof(TensorOptions) <= sizeof(int64_t) * 2,
"TensorOptions must fit in 128-bits");
/// Convenience function that returns a `TensorOptions` object with the `dtype`
/// set to the given one.
inline TensorOptions dtype(caffe2::TypeMeta dtype) {
return TensorOptions().dtype(dtype);
}
// legacy function to support ScalarType
inline TensorOptions dtype(ScalarType dtype) {
return TensorOptions().dtype(scalarTypeToTypeMeta(dtype));
}
/// Convenience function that returns a `TensorOptions` object with the `layout`
/// set to the given one.
inline TensorOptions layout(Layout layout) {
return TensorOptions().layout(layout);
}
/// Convenience function that returns a `TensorOptions` object with the `device`
/// set to the given one.
inline TensorOptions device(Device device) {
return TensorOptions().device(device);
}
/// Convenience function that returns a `TensorOptions` object with the
/// `device` set to CUDA and the `device_index` set to the given one.
inline TensorOptions device_index(c10::DeviceIndex device_index) {
return TensorOptions().device_index(device_index);
}
/// Convenience function that returns a `TensorOptions` object with the
/// `requires_grad` set to the given one.
inline TensorOptions requires_grad(bool requires_grad = true) {
return TensorOptions().requires_grad(requires_grad);
}
/// Convenience function that returns a `TensorOptions` object with the
/// `memory_format` set to the given one.
inline TensorOptions memory_format(MemoryFormat memory_format) {
return TensorOptions().memory_format(memory_format);
}
C10_API std::ostream& operator<<(
std::ostream& stream,
const TensorOptions& options);
template <typename T>
inline TensorOptions dtype() {
return dtype(caffe2::TypeMeta::Make<T>());
}
inline std::string toString(const TensorOptions& options) {
std::ostringstream stream;
stream << options;
return stream.str();
}
// This is intended to be a centralized location by which we can determine
// what an appropriate DispatchKey for a tensor is.
inline DispatchKey computeDispatchKey(
c10::optional<ScalarType> dtype,
c10::optional<Layout> layout,
c10::optional<Device> device) {
const auto layout_ = layout_or_default(layout);
const auto device_ = device_or_default(device);
switch (layout_) {
case Layout::Jagged:
case Layout::Strided: {
const auto dtype_ = dtype_or_default(dtype);
switch (device_.type()) {
#define DO_CASE(device, _) \
case c10::DeviceType::device: { \
if (isQIntType(dtype_)) { \
return DispatchKey::Quantized##device; \
} \
return DispatchKey::device; \
}
C10_FORALL_BACKEND_DEVICE_TYPES(DO_CASE, unused)
#undef DO_CASE
case c10::DeviceType::FPGA:
return DispatchKey::FPGA;
case c10::DeviceType::ORT:
return DispatchKey::ORT;
case c10::DeviceType::Vulkan:
return DispatchKey::Vulkan;
case c10::DeviceType::Metal:
return DispatchKey::Metal;
case c10::DeviceType::MKLDNN:
case c10::DeviceType::OPENGL:
case c10::DeviceType::OPENCL:
case c10::DeviceType::IDEEP:
TORCH_INTERNAL_ASSERT(
0,
"This is a grandfathered Caffe2 device type ",
device_.type(),
", it shouldn't ever convert to a DispatchKey. File a bug describing what you were doing if you think this is in error.");
default:
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"Unsupported device type for dense layout: ",
device_.type());
}
}
case Layout::Sparse:
switch (device_.type()) {
#define DO_CASE(device, _) \
case c10::DeviceType::device: { \
return DispatchKey::Sparse##device; \
}
C10_FORALL_BACKEND_DEVICE_TYPES(DO_CASE, unused)
#undef DO_CASE
default:
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"Unsupported device type for sparse layout: ",
device_.type());
}
case Layout::Mkldnn:
switch (device_.type()) {
case c10::DeviceType::CPU:
return DispatchKey::MkldnnCPU;
default:
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"Unsupported device type for mkldnn layout: ",
device_.type());
}
case Layout::SparseCsr:
case Layout::SparseCsc:
case Layout::SparseBsr:
case Layout::SparseBsc:
switch (device_.type()) {
#define DO_CASE(device, _) \
case c10::DeviceType::device: { \
return DispatchKey::SparseCsr##device; \
}
C10_FORALL_BACKEND_DEVICE_TYPES(DO_CASE, unused)
#undef DO_CASE
default:
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"Unsupported device type for ",
layout_,
" layout: ",
device_.type());
}
default:
TORCH_CHECK(false, "Unsupported layout: ", layout_);
}
}
inline Layout dispatchKeyToLayout(DispatchKey dispatch_key) {
switch (dispatch_key) {
#define DO_CASE(bc, _) case DispatchKey::Sparse##bc:
C10_FORALL_BACKEND_COMPONENTS(DO_CASE, unused)
#undef DO_CASE
return Layout::Sparse;
#define DO_CASE(bc, _) case DispatchKey::SparseCsr##bc:
C10_FORALL_BACKEND_COMPONENTS(DO_CASE, unused)
#undef DO_CASE
TORCH_CHECK(
false, "Cannot map DispatchKey ", dispatch_key, " to a unique layout.");
case DispatchKey::MkldnnCPU:
return Layout::Mkldnn;
default:
return Layout::Strided;
}
}
inline c10::DeviceType dispatchKeyToDeviceType(DispatchKey dispatch_key) {
switch (dispatch_key) {
// stuff that's real
#define DO_CASE(suffix, prefix) \
case DispatchKey::prefix##suffix: \
return c10::DeviceType::suffix;
#define DO_CASES(_, prefix) C10_FORALL_BACKEND_DEVICE_TYPES(DO_CASE, prefix)
C10_FORALL_FUNCTIONALITY_KEYS(DO_CASES)
#undef DO_CASES
#undef DO_CASE
case DispatchKey::MkldnnCPU:
return c10::DeviceType::CPU;
case DispatchKey::Vulkan:
return c10::DeviceType::Vulkan;
case DispatchKey::ORT:
return c10::DeviceType::ORT;
default:
TORCH_CHECK(
false,
"DispatchKey ",
dispatch_key,
" doesn't correspond to a device");
}
}
inline TensorOptions dispatchKeyToTensorOptions(DispatchKey dispatch_key) {
return TensorOptions()
.layout(dispatchKeyToLayout(dispatch_key))
.device(dispatchKeyToDeviceType(dispatch_key));
}
namespace detail {
inline bool backend_supports_empty_operator(const TensorOptions& options) {
// Quantized backends don't support at::empty().
// They have separate operators like at::empty_quantized() that take in
// extra information about how to quantize the tensor.
return !isQIntType(typeMetaToScalarType(options.dtype()));
}
} // namespace detail
} // namespace c10