forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTensorImpl.cpp
1002 lines (904 loc) · 34.9 KB
/
TensorImpl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <c10/core/TensorImpl.h>
#include <c10/core/Contiguity.h>
#include <c10/core/CopyBytes.h>
#include <c10/core/InferenceMode.h>
#include <c10/core/SymIntArrayRef.h>
#include <c10/core/impl/LocalDispatchKeySet.h>
#include <c10/core/impl/PyInterpreter.h>
#include <c10/core/impl/TorchDispatchModeTLS.h>
#include <c10/util/Logging.h>
#include <c10/util/Optional.h>
#include <c10/util/accumulate.h>
#include <c10/util/irange.h>
#include <utility>
C10_DEFINE_bool(
caffe2_keep_on_shrink,
true,
"If set, keeps memory when a tensor is shrinking its size.");
C10_DEFINE_int64(
caffe2_max_keep_on_shrink_memory,
LLONG_MAX,
"The maximum memory in bytes to keep on shrink, if the difference between "
"tensor sizes is bigger than this then tensor will be reset.");
namespace c10 {
const char* const TensorImpl::err_msg_tensor_metadata_change_not_allowed =
"is not allowed on a Tensor created from .data or .detach().\n"
"If your intent is to change the metadata of a Tensor (such as sizes / strides / storage / storage_offset)\n"
"without autograd tracking the change, remove the .data / .detach() call and wrap the change in a `with torch.no_grad():` block.\n"
"For example, change:\n"
" x.data.set_(y)\n"
"to:\n"
" with torch.no_grad():\n"
" x.set_(y)";
at::Tensor& TensorImpl::mutable_grad() {
if (!autograd_meta_)
autograd_meta_ = impl::GetAutogradMetaFactory()->make();
return autograd_meta_->mutable_grad();
}
const at::Tensor& TensorImpl::grad() const {
// Yes, I know this looks really weird. But I don't really have a choice as
// long as this function returns a const reference to Tensor. I'm not
// really sure how I would have designed this API differently, but it
// is not so easy to fix right now because the mutable counterpart of
// this function must keep working so that "x.grad() = ..." keeps working
// (part of public API).
if (!autograd_meta_)
return impl::GetAutogradMetaFactory()->undefined_tensor();
return autograd_meta_->grad();
}
const at::Tensor& TensorImpl::_fw_grad(
uint64_t level,
const at::TensorBase& self) const {
// See TensorImpl::grad() above for explanation about the line below
if (!autograd_meta_)
return impl::GetAutogradMetaFactory()->undefined_tensor();
return autograd_meta_->fw_grad(level, self);
}
void TensorImpl::_set_fw_grad(
const at::TensorBase& new_grad,
const at::TensorBase& self,
uint64_t level,
bool is_inplace_op) {
if (!autograd_meta_)
autograd_meta_ = impl::GetAutogradMetaFactory()->make();
autograd_meta_->set_fw_grad(new_grad, self, level, is_inplace_op);
}
TensorImpl::~TensorImpl() = default;
TensorImpl::TensorImpl(
Storage&& storage,
DispatchKeySet key_set,
const caffe2::TypeMeta data_type)
// Use std::forward to suppress static analyzer false positive.
: TensorImpl(
std::forward<Storage>(storage),
key_set,
data_type,
storage.device()) {}
// [Note: Python key removal]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// In most constructors for TensorImpl, you will see Python and
// PythonTLSSnapshot keys are removed from the passed in DispatchKeySet. Why?
//
// INVARIANT: Python and PythonTLSSnapshot dispatch keys are set iff PyObject
// for the Tensor has a nontrivial __torch_dispatch__ implementation.
//
// When a fresh TensorImpl is created, there is *no* PyObject (this only gets
// initialized lazily at the first point in time the Tensor passes into Python).
// So we would violate the invariant.
//
// In practice, what will happen shortly afterwards is that the TensorImpl
// will get its PyObject initialized by Tensor._make_subclass; at this point
// the Python and PythonTLSSnapshot dispatch keys will be set and all is well.
// The point is to delay the dispatch key setting until that point.
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
TensorImpl::TensorImpl(
ImplType type,
Storage&& storage,
DispatchKeySet key_set,
const caffe2::TypeMeta data_type)
: storage_(std::move(storage)),
numel_(0),
data_type_(data_type),
device_opt_(storage_.device()),
key_set_(key_set - c10::python_ks) { // See [Note: Python key removal]
init_bitfields();
// Inference tensor doesn't have version counter.
if (!is_inference()) {
version_counter_ = VariableVersion(/*version=*/0);
}
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
TensorImpl::TensorImpl(
DispatchKeySet key_set,
const caffe2::TypeMeta data_type,
c10::optional<c10::Device> device_opt)
: TensorImpl({}, key_set, data_type, device_opt) {}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
TensorImpl::TensorImpl(
Storage&& storage,
DispatchKeySet key_set,
const caffe2::TypeMeta data_type,
c10::optional<c10::Device> device_opt)
: storage_(std::move(storage)),
numel_(0),
data_type_(data_type),
device_opt_(device_opt) {
init_bitfields();
if (!key_set.empty()) {
TORCH_INTERNAL_ASSERT(
data_type == ScalarType::Undefined || device_opt_.has_value());
// UndefinedTensorImpl is a singleton, so we skip logging it
C10_LOG_API_USAGE_ONCE("tensor.create");
}
// XXX: if updating keyset logic here also update
// _change_backend_component_keys
bool inference_mode = c10::InferenceMode::is_enabled();
// TODO: be more explicit about the full key set at call sites so we
// don't have to keep recomputing it here
auto k = key_set.highestBackendKey();
key_set = key_set | getAutocastRelatedKeySetFromBackend(k);
// See [Note: Python key removal]
key_set = key_set - c10::python_ks;
// Inference tensor doesn't have autograd related keys.
if (inference_mode) {
// See Note [Expected TLS state in InferenceMode] for why we exclude
// Autograd & ADInplaceOrView keys. Normally key_set only contains backend
// keys but we do the substraction here to make sure.
key_set_ = key_set - c10::autograd_dispatch_keyset_with_ADInplaceOrView;
} else {
// TODO: Ideally we only add AutogradBackend key when the tensor requires
// grad.
// See Note [Dream: skip VariableType kernel when requires_grad=false]
key_set_ = key_set | getAutogradRelatedKeySetFromBackend(k);
}
// Inference tensor doesn't have version counter.
if (!is_inference()) {
version_counter_ = VariableVersion(/*version=*/0);
}
// we would also like to check that non-cpu devices have an index, but some
// Caffe2 operators create Storages with default devices.
}
void TensorImpl::_change_backend_component_keys(c10::Device device) {
BackendComponent new_backend = toBackendComponent(device.type());
BackendComponent old_backend = key_set_.highestBackendKey();
// following logic TensorImpl::TensorImpl, update the BackendComponent related
// keys to correspond to device
// TODO: Autocoast should be a per-backend functionality key, once that change
// is made this key swap will not be necessary.
auto key_set =
key_set_ - c10::getAutocastRelatedKeySetFromBackend(old_backend);
key_set = key_set | c10::getAutocastRelatedKeySetFromBackend(new_backend);
// See note [Removing keys from DispatchKeySet Only Affects Functionality
// Keys]
key_set = key_set.remove_backend(old_backend);
key_set_ = key_set | DispatchKeySet(new_backend);
}
void TensorImpl::HandleResize() {
// If needed, we will free the data. the next mutable_data() call
// will create the data storage.
bool reset_tensor = false;
if (reserved_) {
// If tensor is reserved then don't claim its memory unless nbytes()
// is smaller than new size
reset_tensor =
storage_.nbytes() < (storage_offset_ + numel_) * data_type_.itemsize();
} else {
reset_tensor = storage_.nbytes() <
(storage_offset_ + numel_) * data_type_.itemsize() ||
!FLAGS_caffe2_keep_on_shrink ||
storage_.nbytes() - (storage_offset_ + numel_) * data_type_.itemsize() >
static_cast<size_t>(FLAGS_caffe2_max_keep_on_shrink_memory);
}
if (reset_tensor && storage_initialized()) {
FreeMemory();
}
}
bool TensorImpl::compute_contiguous(identity<bool>) const {
if (is_sparse()) {
return false;
}
return _compute_contiguous<int64_t>(
sizes_and_strides_.sizes_arrayref(),
sizes_and_strides_.strides_arrayref(),
numel_);
}
bool TensorImpl::compute_channels_last_contiguous_2d(identity<bool>) const {
if (is_sparse()) {
return false;
}
return _compute_channels_last_contiguous_2d<int64_t>(
sizes_and_strides_.sizes_arrayref(),
sizes_and_strides_.strides_arrayref());
}
bool TensorImpl::compute_channels_last_contiguous_3d(identity<bool>) const {
if (is_sparse()) {
return false;
}
return _compute_channels_last_contiguous_3d<int64_t>(
sizes_and_strides_.sizes_arrayref(),
sizes_and_strides_.strides_arrayref());
}
bool TensorImpl::compute_strides_like_channels_last_2d(identity<bool>) const {
if (is_sparse()) {
return false;
}
return is_channels_last_strides_2d<int64_t>(
sizes_and_strides_.sizes_arrayref(),
sizes_and_strides_.strides_arrayref());
}
bool TensorImpl::compute_strides_like_channels_last_3d(identity<bool>) const {
if (is_sparse()) {
return false;
}
return is_channels_last_strides_3d<int64_t>(
sizes_and_strides_.sizes_arrayref(),
sizes_and_strides_.strides_arrayref());
}
bool TensorImpl::compute_non_overlapping_and_dense(identity<bool>) const {
if (is_sparse()) {
return false;
}
return _compute_non_overlapping_and_dense<int64_t>(
sizes_and_strides_.sizes_arrayref(),
sizes_and_strides_.strides_arrayref());
}
void TensorImpl::release_resources() {
autograd_meta_.reset();
if (storage_) {
storage_ = {};
}
pyobj_slot_.maybe_destroy_pyobj();
}
#ifndef C10_DISABLE_TENSORIMPL_EXTENSIBILITY
bool TensorImpl::has_storage() const {
return storage_;
}
#endif
void TensorImpl::throw_cannot_call_with_symbolic(const char* meth) const {
TORCH_CHECK_ALWAYS_SHOW_CPP_STACKTRACE(
false, "Cannot call ", meth, "() on tensor with symbolic sizes/strides");
}
void TensorImpl::throw_storage_access_error() const {
if (extra_meta_ && extra_meta_->custom_storage_error_msg_) {
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
TORCH_CHECK(false, *extra_meta_->custom_storage_error_msg_);
}
TORCH_CHECK_NOT_IMPLEMENTED(
false, "Cannot access storage of ", tensorimpl_type_name());
}
void TensorImpl::throw_data_ptr_access_error() const {
if (extra_meta_ && extra_meta_->custom_data_ptr_error_msg_) {
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
TORCH_CHECK(false, *extra_meta_->custom_data_ptr_error_msg_);
}
TORCH_CHECK(
false, "Cannot access data pointer of Tensor that doesn't have storage");
}
bool TensorImpl::is_contiguous_custom(at::MemoryFormat memory_format) const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->is_contiguous(
this, memory_format);
}
return is_contiguous_default(memory_format);
}
bool TensorImpl::is_strides_like_custom(at::MemoryFormat memory_format) const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->is_strides_like(
this, memory_format);
}
return is_strides_like_default(memory_format);
}
bool TensorImpl::is_non_overlapping_and_dense_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->is_non_overlapping_and_dense(
this);
}
return is_non_overlapping_and_dense_default();
}
IntArrayRef TensorImpl::sizes_custom() const {
if (C10_UNLIKELY(
matches_python_custom(SizesStridesPolicy::CustomSizes) ||
has_symbolic_sizes_strides_)) {
return pyobj_slot_.load_pyobj_interpreter()->sizes(this);
}
return sizes_default();
}
c10::SymIntArrayRef TensorImpl::sym_sizes_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomSizes))) {
return pyobj_slot_.load_pyobj_interpreter()->sym_sizes(this);
}
return sym_sizes_default();
}
c10::SymInt TensorImpl::sym_numel_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomSizes))) {
return pyobj_slot_.load_pyobj_interpreter()->sym_numel(this);
}
return sym_numel_default();
}
c10::SymIntArrayRef TensorImpl::sym_strides_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->sym_strides(this);
}
return sym_strides_default();
}
c10::Device TensorImpl::device_custom() const {
if (C10_UNLIKELY(python_custom_device_)) {
return pyobj_slot_.load_pyobj_interpreter()->device(this);
}
return device_default();
}
IntArrayRef TensorImpl::strides_custom() const {
if (C10_UNLIKELY(
matches_python_custom(SizesStridesPolicy::CustomStrides) ||
has_symbolic_sizes_strides_)) {
return pyobj_slot_.load_pyobj_interpreter()->strides(this);
}
return strides_default();
}
int64_t TensorImpl::dim_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomSizes))) {
return pyobj_slot_.load_pyobj_interpreter()->dim(this);
}
return dim_default();
}
int64_t TensorImpl::numel_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomSizes))) {
return pyobj_slot_.load_pyobj_interpreter()->numel(this);
}
return numel_default();
}
c10::Layout TensorImpl::layout_custom() const {
if (C10_UNLIKELY(python_custom_layout_)) {
return pyobj_slot_.load_pyobj_interpreter()->layout(this);
}
// TODO: fix this
TORCH_CHECK(
0, "Tensors of type ", tensorimpl_type_name(), " do not have layout")
// return layout_default();
}
int64_t TensorImpl::storage_offset_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomSizes))) {
// TODO: fix this
return pyobj_slot_.load_pyobj_interpreter()
->sym_storage_offset(this)
.guard_int(__FILE__, __LINE__);
}
return storage_offset_default();
}
c10::SymInt TensorImpl::sym_storage_offset_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomSizes))) {
return pyobj_slot_.load_pyobj_interpreter()->sym_storage_offset(this);
}
return sym_storage_offset_default();
}
static void deletePlacementDeleteContext(void* ptr) {
delete static_cast<PlacementDeleteContext*>(ptr);
}
at::DataPtr PlacementDeleteContext::makeDataPtr(
at::DataPtr&& data_ptr,
PlacementDtor placement_dtor,
size_t size,
at::Device device) {
auto* ptr = data_ptr.get();
return {
ptr,
new PlacementDeleteContext(std::move(data_ptr), placement_dtor, size),
&deletePlacementDeleteContext,
device};
}
AutogradMetaInterface::~AutogradMetaInterface() = default;
// Setting requires_grad to true on inference tensor outside InferenceMode
// is forbidden. Ideally it would also be illegal inside InferenceMode.
// But there's no way that we can directly allocate a tensor to have
// requires_grad = true in C++ constructor so set_requires_grad is widely
// used in C++ frontend. Forbidding it inside InferenceMode will force users
// to delete these setter code in their code which is not ideal.
void TensorImpl::set_requires_grad(bool requires_grad) {
TORCH_CHECK(
!(requires_grad && is_inference() && !c10::InferenceMode::is_enabled()),
"Setting requires_grad=True on inference tensor outside InferenceMode is not allowed.");
if (!requires_grad && !autograd_meta_)
return;
if (!autograd_meta_)
autograd_meta_ = impl::GetAutogradMetaFactory()->make();
// NB: In principle, setting requires_grad to false could result in
// the AutogradMeta becoming equal to a default constructed state,
// in which case we could apply the nullptr AutogradMeta optimization
// (see autograd_meta_ docs). But we don't do this right now. Note
// that it is unsound to unconditionally set AutogradMeta to false
// when you set requires_grad to False, as there may be nontrivial
// information content in the other fields; for example, we may
// have set the string name for a Variable, or there may be hooks
// registered for it.
autograd_meta_->set_requires_grad(requires_grad, this);
}
bool TensorImpl::requires_grad() const {
if (!autograd_meta_)
return false;
return autograd_meta_->requires_grad();
}
void TensorImpl::set_autograd_meta(
std::unique_ptr<c10::AutogradMetaInterface> autograd_meta) {
// NB: autograd_meta may be null! That just means it's the default
// constructor
autograd_meta_ = std::move(autograd_meta);
}
c10::AutogradMetaInterface* TensorImpl::autograd_meta() const {
// NB: Might return null!
return autograd_meta_.get();
}
template <typename VariableVersion>
c10::intrusive_ptr<TensorImpl> TensorImpl::shallow_copy_and_detach_core(
VariableVersion&& version_counter,
bool allow_tensor_metadata_change) const {
c10::intrusive_ptr<TensorImpl> r;
const auto mode_stack_len = c10::impl::TorchDispatchModeTLS::stack_len();
// TODO: do we have to exclude after Python dispatch key set?
if (mode_stack_len > 0 &&
!c10::impl::tls_is_dispatch_key_excluded(DispatchKey::Python)) {
const auto& cur_torch_dispatch_mode_state =
c10::impl::TorchDispatchModeTLS::get_stack_at(mode_stack_len - 1);
r = cur_torch_dispatch_mode_state->pyinterpreter()->detach(this);
} else if (
key_set_.has(DispatchKey::Python) &&
!c10::impl::tls_is_dispatch_key_excluded(DispatchKey::Python)) {
r = (pyobj_slot_.load_pyobj_interpreter())->detach(this);
}
if (r) {
r->set_version_counter(std::forward<VariableVersion>(version_counter));
r->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
return r;
}
// otherwise just copy the TensorImpl and not the PyObject. Since
// the interpreter is dead no one can call us out on it
auto impl = c10::make_intrusive<TensorImpl>(
// No need to populate Storage; copy_tensor_metadata will do it for us.
key_set_,
data_type_,
device_opt_);
copy_tensor_metadata(
/*src_impl=*/this,
/*dest_impl=*/impl.get(),
/*version_counter=*/std::forward<VariableVersion>(version_counter),
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
return impl;
}
c10::intrusive_ptr<TensorImpl> TensorImpl::shallow_copy_and_detach(
const c10::VariableVersion& version_counter,
bool allow_tensor_metadata_change) const {
return shallow_copy_and_detach_core(
version_counter, allow_tensor_metadata_change);
}
c10::intrusive_ptr<TensorImpl> TensorImpl::shallow_copy_and_detach(
c10::VariableVersion&& version_counter,
bool allow_tensor_metadata_change) const {
return shallow_copy_and_detach_core(
std::move(version_counter), allow_tensor_metadata_change);
}
// This function copies all of the metadata from the src tensor except for:
// - key_set_
// - storage_
// - storage_access_should_throw_
// - sizes_strides_policy_
// - version_counter_
// - allow_tensor_metadata_change_
// The idea is that if we have a "wrapper tensor" (like in functionalization),
// all of the above are properties that the wrapper will want to customize,
// while everything else should be mirrored between the wrapper and the inner
// tensor.
void TensorImpl::copy_generic_tensor_metadata(
const TensorImpl* src_impl,
TensorImpl* dest_impl) {
dest_impl->sizes_and_strides_ = src_impl->sizes_and_strides_;
dest_impl->has_symbolic_sizes_strides_ =
src_impl->has_symbolic_sizes_strides_;
dest_impl->storage_offset_ = src_impl->storage_offset_;
dest_impl->data_type_ = src_impl->data_type_;
dest_impl->device_opt_ = src_impl->device_opt_;
dest_impl->is_contiguous_ = src_impl->is_contiguous_;
dest_impl->is_channels_last_contiguous_ =
src_impl->is_channels_last_contiguous_;
dest_impl->is_channels_last_3d_contiguous_ =
src_impl->is_channels_last_3d_contiguous_;
dest_impl->is_channels_last_ = src_impl->is_channels_last_;
dest_impl->is_channels_last_3d_ = src_impl->is_channels_last_3d_;
dest_impl->is_non_overlapping_and_dense_ =
src_impl->is_non_overlapping_and_dense_;
dest_impl->is_wrapped_number_ = src_impl->is_wrapped_number_;
dest_impl->reserved_ = src_impl->reserved_;
dest_impl->numel_ = src_impl->numel_;
if (src_impl->extra_meta_ != nullptr) {
dest_impl->extra_meta_ = src_impl->extra_meta_->clone();
}
// NB: symbolic sizes and strides are copied as is custom policy, but python
// policy is NOT (you have no Python object to dispatch to!)
// NB: subclass relevant policy doesn't have to be copied; the
// constructor sets this up
dest_impl->refresh_sizes_strides_policy();
dest_impl->refresh_layout_policy();
dest_impl->refresh_device_policy();
}
void TensorImpl::copy_tensor_metadata_except_version_counter(
const TensorImpl* src_impl,
TensorImpl* dest_impl,
bool allow_tensor_metadata_change) {
// First call the generic copy function
copy_generic_tensor_metadata(src_impl, dest_impl);
// Then copy everything else (see the comment at copy_generic_tensor_metadata
// for the list of metadata that it does not directly copy).
dest_impl->storage_ = src_impl->storage_;
// Copying tensor metadata doesn't change the PyObject (maybe
// it should), which means that we have to preserve whatever the
// original Python keyset was (as it's associated with the PyObject
// being a tensor subclass or not)
dest_impl->key_set_ = (src_impl->key_set_ - c10::python_ks) |
(dest_impl->key_set_ & c10::python_ks);
dest_impl->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
dest_impl->storage_access_should_throw_ =
src_impl->storage_access_should_throw_;
}
void TensorImpl::copy_tensor_metadata(
const TensorImpl* src_impl,
TensorImpl* dest_impl,
const c10::VariableVersion& version_counter,
bool allow_tensor_metadata_change) {
copy_tensor_metadata_except_version_counter(
src_impl, dest_impl, allow_tensor_metadata_change);
// TODO: In the ideal end state, it's okay to set disabled version_counter
// on inference tensor since it's a no-op. This requires refactor on call
// sites.
if (!dest_impl->is_inference()) {
dest_impl->set_version_counter(version_counter);
}
}
void TensorImpl::copy_tensor_metadata(
const TensorImpl* src_impl,
TensorImpl* dest_impl,
c10::VariableVersion&& version_counter,
bool allow_tensor_metadata_change) {
copy_tensor_metadata_except_version_counter(
src_impl, dest_impl, allow_tensor_metadata_change);
if (!dest_impl->is_inference()) {
dest_impl->set_version_counter(std::move(version_counter));
}
}
// Legacy Caffe2 operations
void TensorImpl::Extend(int64_t num, float growthPct) {
TORCH_CHECK(sizes_and_strides_.size() >= 1u);
TORCH_CHECK(num >= 0, "`num` must be non-negative for Extend");
TORCH_CHECK(
is_contiguous_,
"Right now Extend is only supported for contiguous Tensor.");
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"Extend() called on tensor with symbolic shape")
using SizesVector = SmallVector<int64_t, 5>;
IntArrayRef sizes_and_strides = sizes_and_strides_.sizes_arrayref();
SizesVector newDims(sizes_and_strides.begin(), sizes_and_strides.end());
newDims[0] += num;
if (!storage_.data()) {
Resize(newDims);
return;
}
const auto newNumel = c10::multiply_integers(newDims.begin(), newDims.end());
if (newNumel * data_type_.itemsize() <= storage_.nbytes()) {
sizes_and_strides_.set_sizes(newDims);
numel_ = newNumel;
return;
}
SizesVector newCapacity(sizes_and_strides.begin(), sizes_and_strides.end());
newCapacity[0] = std::max(
newDims[0],
static_cast<int64_t>(std::ceil(
static_cast<float>(sizes_and_strides_.size_at_unchecked(0)) *
(1 + growthPct / 100))));
auto oldData = std::move(storage_.mutable_data_ptr());
auto oldSize = numel_;
Resize(std::move(newCapacity));
auto* newData = raw_mutable_data(data_type_);
if (data_type_.copy()) {
TORCH_CHECK(
device_type() == DeviceType::CPU, "non-POD types work only on CPU");
data_type_.copy()(oldData.get(), newData, oldSize);
} else {
// The following copy uses the current (thread local) stream for copying
// and also takes the GPU id from the device() field passed in.
//
// TODO: Potentially more enforcements are necessary to avoid accidental
// switch to sync copy if the currently set device is wrong.
//
// Specifically, we might need to switch to a different context device
// here explicitly to avoid relying on user synchronizing things
// properly.
CopyBytes(
oldSize * itemsize(),
oldData.get(),
device(),
newData,
device(),
true); // non-blocking
}
reserved_ = true;
sizes_and_strides_.set_sizes(newDims);
numel_ = newNumel;
}
void TensorImpl::ReserveSpace(int64_t outer_dim) {
TORCH_CHECK(
is_contiguous_,
"Right now ReserveSpace is only supported for contiguous Tensor.");
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"ReserveSpace() called on tensor with symbolic shape")
TORCH_CHECK(storage_.unique(), "Can't call ReserveSpace on shared storage.");
// TODO: eliminate newCapacity.
IntArrayRef sizes_and_strides = sizes_and_strides_.sizes_arrayref();
SmallVector<int64_t, 5> newCapacity(
sizes_and_strides.begin(), sizes_and_strides.end());
newCapacity[0] = outer_dim;
auto newNumel = c10::multiply_integers(newCapacity);
if (newNumel * data_type_.itemsize() <= storage_.nbytes()) {
return;
}
// Old data is discarded
storage_.mutable_data_ptr().clear();
auto oldSize = numel_;
SmallVector<int64_t, 5> oldDims(
sizes_and_strides.begin(), sizes_and_strides.end());
Resize(std::move(newCapacity));
// Allocate new memory but don't copy over the data
raw_mutable_data(data_type_);
sizes_and_strides_.set_sizes(oldDims);
numel_ = oldSize;
reserved_ = true;
}
void TensorImpl::Reshape(const std::vector<int64_t>& dims) {
TORCH_CHECK(
is_contiguous_,
"Right now Reshape is only supported for contiguous Tensor.");
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"Reshape() called on tensor with symbolic shape")
int64_t new_size = 1;
for (auto d : dims) {
TORCH_CHECK(d >= 0);
new_size *= d;
}
TORCH_CHECK(
new_size == numel_,
"New size and old size are not equal. You cannot use Reshape, "
"but should use Resize."
// TODO(jiayq): remove the following warning after pending diffs
// stabilize.
" The old caffe2 mixes Reshape and Resize but this behavior has "
"been changed. If you find this error, most likely you will need "
"to change corresponding code from Reshape to Resize.");
sizes_and_strides_.set_sizes(dims);
empty_tensor_restride(MemoryFormat::Contiguous);
}
void TensorImpl::FreeMemory() {
// We'll detach from the old Storage and create a new one
if (storage_.use_count() != 1 || !storage_.resizable() ||
!storage_.allocator()) {
storage_ = Storage::create_legacy(storage_.device());
} else {
storage_.reset_legacy();
}
storage_offset_ = 0;
}
void TensorImpl::ShareData(const TensorImpl& src) {
// Right now, we are assuming the device_type are the same, since it is
// inherently the same in the non-templatized code. We should probably add
// an assert here which might affect perf a little bit.
TORCH_CHECK(
src.numel_ == numel_,
"Size mismatch - did you call reshape before sharing the data?");
// It is possible that the source tensor hasn't called mutable_data() yet,
// in which case ShareData() doesn't make much sense since we don't really
// know what to share yet.
// TODO: Add the assert after all uninitialized states are eliminated
// TORCH_CHECK(src.dtype_initialized(),
// "Source tensor don't have a data type (did you call
// mutable_data<T> on the tensor?)");
if (!src.dtype_initialized()) {
C10_LOG_EVERY_MS(WARNING, 1000)
<< "Source tensor don't have a data type (did you call mutable_data<T> on the tensor?)";
}
TORCH_CHECK(
src.storage_initialized(),
"Source tensor has no content and has size > 0");
// Finally, do sharing.
/* Since we create new Storage whenever we need to change data_type/nbytes
* this still keeps the original semantics
*/
storage_ = src.storage();
data_type_ = src.dtype();
device_opt_ = src.device_opt();
storage_offset_ = src.storage_offset();
}
void TensorImpl::ShareExternalPointer(
DataPtr&& data_ptr,
const caffe2::TypeMeta data_type,
size_t size_bytes) {
TORCH_CHECK(
data_type != ScalarType::Undefined,
"To share with a raw external pointer you need to pass in an "
"initialized data_type(TypeMeta).");
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"ShareExternalPointer() called on tensor with symbolic shape");
if (!size_bytes) {
size_bytes = numel_ * data_type.itemsize();
}
if (storage_.unique()) {
storage_.UniqueStorageShareExternalPointer(std::move(data_ptr), size_bytes);
data_type_ = data_type;
device_opt_ = storage_.device();
storage_offset_ = 0;
} else {
// Create a new Storage
storage_ = Storage(
Storage::use_byte_size_t(),
size_bytes,
std::move(data_ptr),
/*allocator=*/nullptr,
/*resizable=*/false);
data_type_ = data_type;
device_opt_ = storage_.device();
storage_offset_ = 0;
}
}
static void clone_symvec(SymIntArrayRef src, SymDimVector& dst) {
dst.clear();
dst.reserve(src.size());
for (const auto& i : src) {
dst.emplace_back(i.clone());
}
}
// NB: this doesn't check that the sizes/strides/offset are in bound for the
// storage, and furthermore, it CANNOT do so as in some cases we temporarily
// violate invariants by first setting sizes/strides, and then updating the
// storage
void TensorImpl::set_sizes_and_strides(
c10::SymIntArrayRef sizes,
c10::SymIntArrayRef strides,
c10::optional<c10::SymInt> storage_offset) {
auto int_sizes = asIntArrayRefSlowOpt(sizes);
auto int_strides = asIntArrayRefSlowOpt(strides);
if (int_sizes && int_strides &&
// NB: storage_offset guaranteed to be positive
(!storage_offset.has_value() || !storage_offset->is_heap_allocated()) &&
!has_symbolic_sizes_strides_) {
set_sizes_and_strides(*int_sizes, *int_strides);
if (storage_offset.has_value())
set_storage_offset(storage_offset->as_int_unchecked());
return;
}
TORCH_CHECK(
allow_tensor_metadata_change(),
"set_sizes_and_strides ",
err_msg_tensor_metadata_change_not_allowed);
has_symbolic_sizes_strides_ = true;
refresh_sizes_strides_policy();
if (!extra_meta_) {
extra_meta_ = std::make_unique<ExtraMeta>();
extra_meta_->symbolic_shape_meta_ =
std::make_unique<c10::SymbolicShapeMeta>();
extra_meta_->symbolic_shape_meta_->strides_valid_ = !is_sparse();
if (!storage_offset.has_value()) {
extra_meta_->symbolic_shape_meta_->storage_offset_ = storage_offset_;
}
}
auto& sym_shape_meta{symbolic_shape_meta()};
clone_symvec(sizes, sym_shape_meta.sizes_);
clone_symvec(strides, sym_shape_meta.strides_);
if (storage_offset.has_value())
sym_shape_meta.storage_offset_ = storage_offset->clone();
refresh_numel();
refresh_contiguous();
}
void TensorImpl::generic_set_sizes_contiguous(SymIntArrayRef sizes) {
auto int_sizes = asIntArrayRefSlowOpt(sizes);
if (int_sizes.has_value()) {
set_sizes_contiguous(*int_sizes);
return;
}
TORCH_CHECK(
allow_tensor_metadata_change(),
"generic_set_sizes_contiguous ",
err_msg_tensor_metadata_change_not_allowed);
has_symbolic_sizes_strides_ = true;
refresh_sizes_strides_policy();
auto& extra_meta{get_extra_meta()};
if (extra_meta.symbolic_shape_meta_ == nullptr) {
extra_meta_->symbolic_shape_meta_ =
std::make_unique<c10::SymbolicShapeMeta>();
extra_meta_->symbolic_shape_meta_->strides_valid_ = !is_sparse();
}
clone_symvec(sizes, symbolic_shape_meta().sizes_);
refresh_numel();
empty_tensor_restride_symint(
MemoryFormat::Contiguous); // calls refresh_contiguous()
}
void TensorImpl::empty_tensor_restride_symint(MemoryFormat memory_format) {
TORCH_INTERNAL_ASSERT(has_symbolic_sizes_strides_);
auto& sym_shape_meta{symbolic_shape_meta()};
switch (memory_format) {
case MemoryFormat::Contiguous: {
// TODO: figure out if the non-symint version can also devirtualize;
// the last time we tried it was probably a narrowing problem
const auto dim_ = sym_shape_meta.dim();
sym_shape_meta.strides_.resize(dim_);
if (dim_ > 0) {
const auto last_idx = dim_ - 1;
sym_shape_meta.strides_[last_idx] = c10::SymInt(1);
for (auto i = last_idx - 1; i >= 0; --i) {
sym_shape_meta.strides_[i] = sym_shape_meta.strides_[i + 1] *
sym_shape_meta.sizes_[i + 1].max(1);
}
}
break;
}
case MemoryFormat::ChannelsLast: {
TORCH_CHECK(
dim() == 4, "required rank 4 tensor to use channels_last format");
clone_symvec(
get_channels_last_strides_2d(sym_sizes()), sym_shape_meta.strides_);
break;
}
case MemoryFormat::ChannelsLast3d: {
TORCH_CHECK(
dim() == 5, "required rank 5 tensor to use channels_last_3d format");
clone_symvec(
get_channels_last_strides_3d(sym_sizes()), sym_shape_meta.strides_);
break;
}
case MemoryFormat::Preserve:
TORCH_CHECK(false, "unsupported memory format ", memory_format);
// Cleaning warning messages, no need to break as TORCH_CHECK(false)
// terminates flow.
// break;
case MemoryFormat::NumOptions:
TORCH_INTERNAL_ASSERT(false, "invalid memory format ", memory_format);
}
// recompute contiguous flag, as currently NHWC/NCHW flags are not mutually
// exclusive see #24090
refresh_contiguous();
// hard code some known true settings, for unbacked case
// TODO: avoid chundering into the guards for computing these
switch (memory_format) {
case MemoryFormat::Contiguous: {
sym_shape_meta.assume_contiguous();
sym_shape_meta.assume_non_overlapping_and_dense();
break;
}
case MemoryFormat::ChannelsLast: {
sym_shape_meta.assume_channels_last_contiguous();
sym_shape_meta.assume_channels_last();
sym_shape_meta.assume_non_overlapping_and_dense();
break;
}
case MemoryFormat::ChannelsLast3d: {
sym_shape_meta.assume_channels_last_3d_contiguous();
sym_shape_meta.assume_channels_last_3d();
sym_shape_meta.assume_non_overlapping_and_dense();
break;
}
default:
break;
}
}
namespace impl {
namespace {
AutogradMetaFactory* meta_factory = nullptr;
} // namespace
void SetAutogradMetaFactory(AutogradMetaFactory* factory) {
meta_factory = factory;
}
AutogradMetaFactory* GetAutogradMetaFactory() {
TORCH_CHECK(
meta_factory,
"Support for autograd has not been loaded; have you linked against libtorch.so?")
return meta_factory;
}
} // namespace impl