forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSymFloat.h
113 lines (93 loc) · 3.19 KB
/
SymFloat.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#pragma once
#include <c10/core/SymBool.h>
#include <c10/core/SymNodeImpl.h>
#include <c10/macros/Export.h>
#include <c10/macros/Macros.h>
#include <c10/util/Exception.h>
#include <c10/util/intrusive_ptr.h>
#include <cstdint>
#include <limits>
#include <ostream>
#include <utility>
namespace c10 {
// NB: this is actually double precision; we're using the Python naming here
class C10_API SymFloat {
public:
/*implicit*/ SymFloat(double d) : data_(d){};
SymFloat(SymNode ptr)
: data_(std::numeric_limits<double>::quiet_NaN()), ptr_(std::move(ptr)) {
TORCH_CHECK(ptr_->is_float());
};
SymFloat() : data_(0.0) {}
SymNodeImpl* toSymNodeImplUnowned() const {
return ptr_.get();
}
SymNodeImpl* release() && {
return std::move(ptr_).release();
}
// Only valid if is_symbolic()
SymNode toSymNodeImpl() const;
// Guaranteed to return a SymNode, wrapping using base if necessary
SymNode wrap_node(const SymNode& base) const;
double expect_float() const {
TORCH_CHECK(!is_symbolic());
return data_;
}
SymFloat operator+(const SymFloat&) const;
SymFloat operator-(const SymFloat&) const;
SymFloat operator*(const SymFloat&) const;
SymFloat operator/(const SymFloat&) const;
SymBool sym_eq(const SymFloat&) const;
SymBool sym_ne(const SymFloat&) const;
SymBool sym_lt(const SymFloat&) const;
SymBool sym_le(const SymFloat&) const;
SymBool sym_gt(const SymFloat&) const;
SymBool sym_ge(const SymFloat&) const;
bool operator==(const SymFloat& o) const {
return sym_eq(o).guard_bool(__FILE__, __LINE__);
}
bool operator!=(const SymFloat& o) const {
return sym_ne(o).guard_bool(__FILE__, __LINE__);
}
bool operator<(const SymFloat& o) const {
return sym_lt(o).guard_bool(__FILE__, __LINE__);
}
bool operator<=(const SymFloat& o) const {
return sym_le(o).guard_bool(__FILE__, __LINE__);
}
bool operator>(const SymFloat& o) const {
return sym_gt(o).guard_bool(__FILE__, __LINE__);
}
bool operator>=(const SymFloat& o) const {
return sym_ge(o).guard_bool(__FILE__, __LINE__);
}
SymFloat min(const SymFloat& sci) const;
SymFloat max(const SymFloat& sci) const;
// Need guidance on where to put this code
SymFloat sqrt() const;
// Insert a guard for the float to be its concrete value, and then return
// that value. This operation always works, even if the float is symbolic,
// so long as we know what the underlying value is. Don't blindly put this
// everywhere; you can cause overspecialization of PyTorch programs with
// this method.
//
// It should be called as guard_float(__FILE__, __LINE__). The file and line
// number can be used to diagnose overspecialization.
double guard_float(const char* file, int64_t line) const;
bool has_hint() const;
// N.B. It's important to keep this definition in the header
// as we expect if checks to be folded for mobile builds
// where `is_symbolic` is always false
C10_ALWAYS_INLINE bool is_symbolic() const {
return ptr_;
}
double as_float_unchecked() const {
return data_;
}
private:
// TODO: optimize to union
double data_;
SymNode ptr_;
};
C10_API std::ostream& operator<<(std::ostream& os, const SymFloat& s);
} // namespace c10