forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDynamicCast.h
125 lines (114 loc) · 4.34 KB
/
DynamicCast.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#pragma once
#include <c10/core/ScalarType.h>
#include <c10/macros/Macros.h>
#include <c10/util/Load.h>
#include <c10/util/TypeCast.h>
namespace c10 {
// Dynamic type casting utils:
// - fetch_and_cast
// - cast_and_store
//
// fetch_and_cast fetch a value with dynamic type specified by a ScalarType
// from a void pointer and cast it to a static type.
//
// cast_and_store casts a static typed value into dynamic type specified
// by a ScalarType, and store it into a void pointer.
//
// NOTE:
//
// Dynamic casting allows us to support type promotion without blowing up
// the combination space: For example, without dynamic cast, in order to
// implement `add_` with type promotion, we would need something like
//
// AT_DISPATCH_ALL_TYPES(output.dtype(),
// AT_DISPATCH_ALL_TYPES(input1.dtype(),
// AT_DISPATCH_ALL_TYPES(input2.dtype(),
// [](arg0_t a, arg1_t b) -> out_t { return a + b; }
// )
// )
// )
//
// If we support N dtypes, the above code would generate the a+b kernel for
// all the N * N * N different supported types, the compilation time and
// binary size would become horrible.
//
// Dynamic casting might sounds like a bad idea in terms of performance.
// Especially if you ever do it in a loop, you are going to do a billion tests.
// But in practice it is not as bad as it might look:
//
// - on CPU, this is a branch that always has the same outcome, therefore
// hopefully the branch predictor could do the job pretty well
// - on GPU, these branches will not diverge, so we could still have the same
// warp executing the same line of code
// - Most kernels, like `add`, are bandwidth bound, adding a few clock cycles to
// check an integer does not hurt the performance much because the ALUs would
// wait for load instructions anyway.
//
// For the discussion and benchmark, refer to:
// - https://github.com/pytorch/pytorch/pull/28343
// - https://github.com/pytorch/pytorch/pull/28344
// - https://github.com/pytorch/pytorch/pull/28345
//
#ifdef C10_HOST_DEVICE
#define ERROR_UNSUPPORTED_CAST CUDA_KERNEL_ASSERT(false);
#else
#define ERROR_UNSUPPORTED_CAST TORCH_CHECK(false, "Unexpected scalar type");
#endif
// Fetch a value with dynamic type src_type from ptr, and cast it to static type
// dest_t.
#define FETCH_AND_CAST_CASE(type, scalartype) \
case ScalarType::scalartype: \
return c10::convert<dest_t>(c10::load<type>(ptr));
template <typename dest_t>
C10_HOST_DEVICE inline dest_t fetch_and_cast(
const ScalarType src_type,
const void* ptr) {
switch (src_type) {
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(FETCH_AND_CAST_CASE)
FETCH_AND_CAST_CASE(uint16_t, UInt16)
FETCH_AND_CAST_CASE(uint32_t, UInt32)
FETCH_AND_CAST_CASE(uint64_t, UInt64)
default:
ERROR_UNSUPPORTED_CAST
}
return dest_t(0); // just to avoid compiler warning
}
// Cast a value with static type src_t into dynamic dest_type, and store it to
// ptr.
#define CAST_AND_STORE_CASE(type, scalartype) \
case ScalarType::scalartype: \
*(type*)ptr = c10::convert<type>(value); \
return;
template <typename src_t>
C10_HOST_DEVICE inline void cast_and_store(
const ScalarType dest_type,
void* ptr,
src_t value) {
switch (dest_type) {
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(CAST_AND_STORE_CASE)
CAST_AND_STORE_CASE(uint16_t, UInt16)
CAST_AND_STORE_CASE(uint32_t, UInt32)
CAST_AND_STORE_CASE(uint64_t, UInt64)
default:;
}
ERROR_UNSUPPORTED_CAST
}
#define DEFINE_UNCASTABLE(T, scalartype_) \
template <> \
C10_HOST_DEVICE inline T fetch_and_cast<T>( \
const ScalarType src_type, const void* ptr) { \
CUDA_KERNEL_ASSERT(ScalarType::scalartype_ == src_type); \
return c10::load<T>(ptr); \
} \
template <> \
C10_HOST_DEVICE inline void cast_and_store<T>( \
const ScalarType dest_type, void* ptr, T value) { \
CUDA_KERNEL_ASSERT(ScalarType::scalartype_ == dest_type); \
*(T*)ptr = value; \
}
AT_FORALL_QINT_TYPES(DEFINE_UNCASTABLE)
#undef FETCH_AND_CAST_CASE
#undef CAST_AND_STORE_CASE
#undef DEFINE_UNCASTABLE
#undef ERROR_UNSUPPORTED_CAST
} // namespace c10