forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDispatchKey.h
748 lines (653 loc) · 31.9 KB
/
DispatchKey.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
#pragma once
#include <c10/core/DeviceType.h>
#include <c10/macros/Export.h>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <ostream>
#include <string>
namespace c10 {
// Semantically, each value of BackendComponent identifies a "backend" for our
// dispatch. Some functionalities that we may dispatch to are allowed to
// register different handlers for each backend. The BackendComponent is then
// used to figure out which backend implementation to dispatch to.
// In implementation terms, the backend component identifies a specific "bit" in
// a DispatchKeySet. The bits in the DispatchKeySet are split between the bottom
// ~12 "BackendComponent" bits, while the remaining upper bits are assigned to
// functionalities. When we encounter a functionality bit that is known to be
// customizable per-backend, then we also look at the lower BackendComponent
// bits and take the highest bit to determine which backend's implementation to
// use.
// WARNING! If you add a new backend component to the end of this list,
// make sure you register it before Meta.
// Meta must be at the end so that meta key in tls triggers meta kernels.
// (But you shouldn't: private use keys should have higher precedence than all
// built-in keys)
// If you add a new (non-privateuse) backend here,
// make sure to add an Autograd<Backend> fallthrough kernel
// in aten/src/ATen/core/VariableFallbackKernel.cpp
#define C10_FORALL_BACKEND_COMPONENTS(_, extra) \
_(CPU, extra) \
_(CUDA, extra) \
_(HIP, extra) \
_(XLA, extra) \
_(MPS, extra) \
_(IPU, extra) \
_(XPU, extra) \
_(HPU, extra) \
_(VE, extra) \
_(Lazy, extra) \
_(MTIA, extra) \
_(PrivateUse1, extra) \
_(PrivateUse2, extra) \
_(PrivateUse3, extra) \
_(Meta, extra)
// WARNING! If we add a new per-backend functionality key that has higher
// priority than Autograd, then make sure you update EndOfRuntimeBackendKeys
#define C10_FORALL_FUNCTIONALITY_KEYS(_) \
_(Dense, ) \
_(Quantized, Quantized) \
_(Sparse, Sparse) \
_(SparseCsr, SparseCsr) \
_(NestedTensor, NestedTensor) \
_(AutogradFunctionality, Autograd)
enum class BackendComponent : uint8_t {
// A "backend" is colloquially used to refer to handlers for dispatch
// which actually implement the numerics of an operation in question.
//
// Due to the nature of the enum, these backends are specified in
// an ordered way, but for most backends this order is not semantically
// meaningful (e.g., it's valid to reorder these backends without changing
// semantics). The only situation when backend ordering is meaningful
// is when the backend participates in multiple dispatch with another
// backend; e.g., CPU and CUDA (cuda must have higher priority).
// These keys don't correspond to individual kernels.
// Instead, they represent the backends that are allowed to override specific
// pieces of functionality:
// - dense kernels (e.g. DispatchKey::CPU)
// - sparse kernels (e.g. DispatchKey::SparseCPU)
// - quantized kernels (e.g. DispatchKey::QuantizedCPU)
// - autograd kernels (e.g. DispatchKey::AutogradCPU)
// We reserve space in the runtime operator table for this full cross product
// of
// [backends in this enum] x [keys below that are explicitly marked as having
// per-backend functionality]
//
// A meta tensor is a tensor without any data associated with it. (They
// have also colloquially been referred to as tensors on the "null" device).
// A meta tensor can be used to dry run operators without actually doing any
// computation, e.g., add on two meta tensors would give you another meta
// tensor with the output shape and dtype, but wouldn't actually add anything.
InvalidBit = 0,
#define DEFINE_BACKEND_COMPONENT(n, _) n##Bit,
C10_FORALL_BACKEND_COMPONENTS(DEFINE_BACKEND_COMPONENT, unused)
#undef DEFINE_BACKEND_COMPONENT
// Define an alias to represent end of backend dispatch keys.
// If you add new backend keys after PrivateUse3, please also update it here.
EndOfBackendKeys = MetaBit,
};
// Semantically, a dispatch key identifies a possible "level" in our
// dispatch, for which a handler may be registered. Each handler corresponds
// to a type of functionality.
//
// In implementation terms, the dispatch key identifies a specific "bit" in a
// DispatchKeySet. Higher bit indexes get handled by dispatching first (because
// we "count leading zeros" when we extract the highest priority dispatch
// key.)
//
// Note [DispatchKey Classification]
// This enum actually contains several types of keys, which are explained
// in more detail further down:
// (1) non-customizable backends (e.g. FPGA)
// (2) non-customizable functionalities (e.g. Functionalize)
// (3) functionalized that are customizable per backend (e.g. Dense, Sparse,
// AutogradFunctionality) (4) per-backend instances of customizable
// functionalities (e.g. CPU, SparseCPU, AutogradCPU) (5) alias keys (e.g.
// CompositeImplicitAutograd)
//
// Of the categories above, it's important to note:
// (a) which keys are assigned individual bits in a DispatchKeySet
// (b) which keys are assigned individual slots in the runtime operator table
// ("Runtime keys")
//
// (1), (2) and (3) all get their own dedicated bits in the DispatchKeySet.
// (1), (2) and (4) all get their own dedicated slots in the runtime operator
// table.
// See Note [DispatchKeySet Internal Representation] for more details.
//
// NOTE: Keep the list in sync with `DispatchKey` in torchgen/model.py
enum class DispatchKey : uint16_t {
// ~~~~~~~~~~~~~~~~~~~~~~~~~~ UNDEFINED ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// This is not a "real" functionality, but it exists to give us a "nullopt"
// element we can return for cases when a DispatchKeySet contains no elements.
// You can think a more semantically accurate definition of DispatchKey is:
//
// using DispatchKey = optional<RealDispatchKey>
//
// and Undefined == nullopt. We didn't actually represent
// it this way because optional<RealDispatchKey> would take two
// words, when DispatchKey fits in eight bits.
Undefined = 0,
// Define an alias for Undefined to represent CatchAll (long term
// this will get eliminated, but for now it's convenient)
CatchAll = Undefined,
// ~~~~~~~~~~~~~~~~~~~~~~~~~~ Functionality Keys ~~~~~~~~~~~~~~~~~~~~~~ //
// Every value in the enum (up to EndOfFunctionalityKeys)
// corresponds to an individual "functionality" that can be dispatched to.
// This is represented in the DispatchKeySet by assigning each of these enum
// values
// to each of the remaining (64 - len(BackendComponent)) bits.
//
// Most of these functionalities have a single handler assigned to them,
// making them "runtime keys".
// That map to a single slot in the runtime operator table.
//
// A few functionalities are allowed to be customizable per backend.
// See [Note: Per-Backend Functionality Dispatch Keys] for details.
// See [Note: Per-Backend Functionality Dispatch Keys]
Dense,
// Below are non-extensible backends.
// These are backends that currently don't have their own overrides for
// Autograd/Sparse/Quantized kernels,
// and we therefore don't waste space in the runtime operator table allocating
// space for them.
// If any of these backends ever need to customize, e.g., Autograd, then we'll
// need to add a DispatchKey::*Bit for them.
// TODO: put this in BackendComponents
FPGA, // Xilinx support lives out of tree at
// https://gitlab.com/pytorch-complex/vitis_kernels
// TODO: put this in BackendComponents
// ONNX Runtime, lives out of tree at https://github.com/pytorch/ort and
// https://github.com/microsoft/onnxruntime, and is also used to test general
// backend/extension machinery in the core. cf:
// - test/cpp_extensions/ort_extension.cpp
// - test/test_torch.py
// - aten/src/ATen/test/extension_backend_test.cpp
ORT,
Vulkan, // TODO: put this in BackendComponents
Metal, // TODO: put this in BackendComponents
// See [Note: Per-Backend Functionality Dispatch Keys]
Quantized,
// This backend is to support custom RNGs; it lets you go
// to a different kernel if you pass in a generator that is not a
// traditional CPUGeneratorImpl/CUDAGeneratorImpl. To make use of this
// key:
// 1) set it as a second parameter of at::Generator constructor call in
// the user-defined PRNG class.
// 2) use it as a dispatch key while registering custom kernels
// (templatized kernels specialized for user-defined PRNG class)
// intended for out of tree use; tested by aten/src/ATen/test/rng_test.cpp
CustomRNGKeyId,
// TODO: Make Mkldnn a functionality key, so we can give it Meta
// support
// Here are backends which specify more specialized operators
// based on the layout of the tensor. Note that the sparse backends
// are one case where ordering matters: sparse multi-dispatches with
// the corresponding dense tensors, and must be handled before them.
MkldnnCPU, // registered at build/aten/src/ATen/RegisterMkldnnCPU.cpp
// NB: not to be confused with MKLDNN, which is Caffe2 only
// See [Note: Per-Backend Functionality Dispatch Keys]
Sparse,
SparseCsr,
NestedTensor,
// In some situations, it is not immediately obvious what the correct
// backend for function is, because the function in question doesn't
// have any "tensor" arguments. In this case, a BackendSelect function
// can be registered to implement the custom determination of the
// correct backend.
BackendSelect,
Python,
// Out-of-core key for Fake Tensor in torchdistx.
// See https://pytorch.org/torchdistx/latest/fake_tensor.html
// TODO: delete this in favor of Python-implemented fake tensor
Fake,
// See Note [Out-of-tree vmap+grad prototype]. The purpose of this key
// is to insert code after the "autograd subsystem" runs, so this key should
// be directly after ADInplaceOrView and all of the autograd keys.
FuncTorchDynamicLayerBackMode,
// Alias and mutation removal.
// If some backends want to opt into only alias removal or only mutation
// removal,
// we can consider adding separate keys dedicated to those individual passes.
// See Note [Functionalization Pass In Core] for details.
Functionalize,
// The named dispatch key is set for any tensors with named dimensions.
// Although we have a dispatch key for named tensors, for historical reasons,
// this dispatch key doesn't do any of the substantive functionality for named
// tensor (though, hypothetically, it could!) At the moment, it's just
// responsible for letting us give good error messages when operations
// don't support named tensors.
//
// NB: If you ever consider moving named tensor functionality into
// this dispatch key, note that it might be necessary add another dispatch
// key that triggers before composite operators, in case a composite operator
// has named dimension propagation that doesn't match that of its
// constituent parts.
// TODO: delete this once torchdim lands in functorch
Named,
// The Conjugate dispatch key is set for any tensors that need to perform
// conjugation
// This is implemented at a dispatch level right before any backends run
Conjugate,
// The Negative dispatch key is set for any tensors that need to perform
// negation
// This is implemented at a dispatch level right before any backends run
Negative,
ZeroTensor, // registered at build/aten/src/ATen/RegisterZeroTensor.cpp
// Note [ADInplaceOrView key]
// ADInplaceOrView key is used by inplace or view ops to register a kernel
// that does additional setup for future autograd computation.
//
// 1. For inplace ops this kernel does version bump
// 2. For view ops this kernel does `as_view` setup where we properly setup
// DifferentiableViewMeta on the view tensors.
//
// For other ops it's fallthrough kernel since there's no extra
// work to do.
//
// Note [Dream: skip VariableType kernel when requires_grad=false]
//
// In an ideal world where we can skip VariableType kernel for inputs
// with requires_grad=false, instead of a fallthrough kernel, we'll
// register a kernel shown below to all functional ops as well:
// torch::Tensor my_functional_op(...) {
// {
// // Note for every op in VariableType, you need to go through
// // `AutoDispatchBelowADInplaceOrView` guard exactly once to add the
// // key to TLS excluded set. If you don't go through it at all,
// // inplace/view ops called through `at::` inside your backend
// // kernel will dispatch to ADInplaceOrView kernels and do a lot
// // of extra work.
// at::AutoDispatchBelowADInplaceOrView guard;
// at::redispatch::my_functional_op(...);
// }
// }
// But this work is currently blocked since it adds an extra dispatch
// for all ops and it's non-trivial overhead at model level(a few percents).
// Thus our current approach takes advantage of the fact every kernel go
// through VariableType kernel first and pulls the
// `at::AutoDispatchBelowADInplaceOrView` guard of functional ops
// up to the `VariableType` kernel. Thus we only add the extra dispatch
// to view/inplace ops to minimize its perf impact to real models.
ADInplaceOrView,
// Note [Alias Dispatch Key : Autograd]
// All backends are oblivious to autograd; autograd is handled as a
// layer which happens on top of all backends. It inspects the autograd
// metadata of all inputs, determines what autograd metadata should be
// constructed by the output, and otherwise defers to the backend to
// actually do the numeric computation. Autograd contains
// the bulk of this logic.
// Autograd is now an alias dispatch key which by default maps to all
// backend-specific autograd keys.
// Backend-specific allow backends to override the default kernel registered
// to Autograd key as needed.
// For example, XLA wants to define autograd for einsum directly.
// Registering a custom autograd implementation at the XLA key won't work
// because we process Autograd before XLA. This key has higher priority and
// gets processed first. You generally should NOT redispatch after handling
// autograd here (since that would result in execution of the Autograd
// operator, which you're trying to skip). In AutogradXLA implementations,
// you are responsible for handling autograd yourself, or deferring to other
// operators which support autograd.
// Currently we only have backend-specific autograd keys for CPU/CUDA/XLA and
// reserved user-defined backends. All other in-tree backends share the
// AutogradOther key. We can add specific autograd key for those backends
// upon request.
AutogradOther,
// See [Note: Per-Backend Functionality Dispatch Keys]
AutogradFunctionality,
// NestedTensor is an example of something that isn't a "real backend"
// (because it mostly consists of redispatching kernels)
// but it would like to override autograd functionality in C++.
// We can handle cases like this by adding an extra functionality key
// exclusively for handling autograd for NestedTensor.
// lives out of tree at
// https://github.com/pytorch/nestedtensor
AutogradNestedTensor,
Tracer,
// TODO: make Autocast a functionality key
// Autocasting precedes VariableTypeId, to ensure casts are autograd-exposed
// and inputs are saved for backward in the post-autocast type.
AutocastCPU,
AutocastXPU,
AutocastIPU,
AutocastHPU,
AutocastXLA,
// AutocastXLA is only being used for TPUs. XLA GPUs continue to use
// AutocastCUDA.
AutocastCUDA,
AutocastPrivateUse1,
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~ WRAPPERS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// There are a number of alternative modes which may want to handle before
// autograd; for example, error checking, tracing, profiling or vmap. They
// go here.
FuncTorchBatched, // See Note [Out-of-tree vmap+grad prototype]
// Dispatch key for BatchedTensorImpl wrapping a nested tensor.
BatchedNestedTensor,
FuncTorchVmapMode, // See Note [Out-of-tree vmap+grad prototype]
// This is the dispatch key for BatchedTensorImpl, which is used to implement
// batching rules for vmap.
Batched,
// When we are inside a vmap, all tensors dispatch on this key.
// See Note: [DispatchKey::VmapMode usage] for more details.
VmapMode,
FuncTorchGradWrapper, // See Note [Out-of-tree vmap+grad prototype]
// Out-of-core key for Deferred Module Initialization in torchdistx.
// See https://pytorch.org/torchdistx/latest/deferred_init.html
DeferredInit,
// Used by Python key logic to know the set of tls on entry to the dispatcher
// This kernel assumes it is the top-most non-functorch-related DispatchKey.
// If you add a key above, make sure to update the fallback implementation for
// this.
PythonTLSSnapshot,
// This key should be at the very top of the dispatcher
FuncTorchDynamicLayerFrontMode, // See Note [Out-of-tree vmap+grad prototype]
// TESTING: This is intended to be a generic testing tensor type id.
// Don't use it for anything real; its only acceptable use is within a single
// process test. Use it by creating a TensorImpl with this DispatchKey, and
// then registering operators to operate on this type id. See
// aten/src/ATen/core/dispatch/backend_fallback_test.cpp for a usage example.
TESTING_ONLY_GenericWrapper,
// TESTING: This is intended to be a generic testing tensor type id.
// Don't use it for anything real; its only acceptable use is within a ingle
// process test. Use it by toggling the mode on and off via
// TESTING_ONLY_tls_generic_mode_set_enabled and then registering operators
// to operate on this type id. See
// aten/src/ATen/core/dispatch/backend_fallback_test.cpp
// for a usage example
TESTING_ONLY_GenericMode,
// This key is used for pre-dispatch tracing in make_fx.
// It has lower priority than the PythonDispatcher key
// because we use the PythonDispatcher to intercept the key from python,
// and avoid having to implement it in C++.
PreDispatch,
// This is a bypass that allows you to skip running the C++ dispatcher
// entirely
PythonDispatcher,
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FIN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
EndOfFunctionalityKeys, // End of functionality keys.
// ~~~~~~~~~~~~~~ "Dense" Per-Backend Dispatch keys ~~~~~~~~~~~~~~~~~~~~ //
// Here are backends which you think of as traditionally specifying
// how to implement operations on some device.
#define DEFINE_PER_BACKEND_KEYS_FOR_BACKEND(n, prefix) prefix##n,
#define DEFINE_PER_BACKEND_KEYS(fullname, prefix) \
StartOf##fullname##Backends, \
C10_FORALL_BACKEND_COMPONENTS( \
DEFINE_PER_BACKEND_KEYS_FOR_BACKEND, prefix) \
EndOf##fullname##Backends = prefix##Meta,
C10_FORALL_FUNCTIONALITY_KEYS(DEFINE_PER_BACKEND_KEYS)
#undef DEFINE_PER_BACKEND_KEYS
#undef DEFINE_PER_BACKEND_KEYS_FOR_BACKEND
EndOfRuntimeBackendKeys = EndOfAutogradFunctionalityBackends,
// ~~~~~~~~~~~~~~~~~~~~~~ Alias Dispatch Keys ~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// Note [Alias Dispatch Keys]
// Alias dispatch keys are synthetic dispatch keys which map to multiple
// runtime dispatch keys. Alisa keys have precedence, but they are always
// lower precedence than runtime keys. You can register a kernel to an
// alias key, the kernel might be populated to the mapped runtime keys
// during dispatch table computation.
// If a runtime dispatch key has multiple kernels from alias keys, which
// kernel wins is done based on the precedence of alias keys (but runtime
// keys always have precedence over alias keys).
// Alias keys won't be directly called during runtime.
// See Note [Alias Dispatch Key : Autograd]
Autograd,
CompositeImplicitAutograd, // registered at
// build/aten/src/ATen/RegisterCompositeImplicitAutograd.cpp
// Note: The alias keyset for FuncTorchBatchedDecomposition is disjoint from
// all
// other alias keysets
// and so precedence order doesn't matter
FuncTorchBatchedDecomposition, // registered at
// build/aten/src/ATen/RegisterFuncTorchBatchedDecomposition.cpp
// Note: The alias keyset for CompositeImplicitAutogradNestedTensor is
// disjoint from all other alias keysets
CompositeImplicitAutogradNestedTensor, // registered at
// build/aten/src/ATen/RegisterCompositeImplicitAutogradNestedTensor.cpp
CompositeExplicitAutograd, // registered at
// build/aten/src/ATen/RegisterCompositeExplicitAutograd.cpp
// See Note [CompositeExplicitAutogradNonFunctional Key]
CompositeExplicitAutogradNonFunctional, // registered at
// build/aten/src/ATen/RegisterCompositeExplicitAutograd.cpp
// Define an alias key to represent end of alias dispatch keys.
// If you add new alias keys after Autograd, please also update it here.
StartOfAliasKeys = Autograd,
EndOfAliasKeys = CompositeExplicitAutogradNonFunctional, //
// ~~~~~~~~~~~~~~~~~~~~~~~~~ BC ALIASES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// The aliases exist for backwards compatibility reasons, they shouldn't
// be used
CPUTensorId = CPU,
CUDATensorId = CUDA,
DefaultBackend = CompositeExplicitAutograd,
PrivateUse1_PreAutograd = AutogradPrivateUse1,
PrivateUse2_PreAutograd = AutogradPrivateUse2,
PrivateUse3_PreAutograd = AutogradPrivateUse3,
Autocast = AutocastCUDA,
};
// Note [Private use DispatchKey]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Private use tensor IDs are preallocated tensor type IDs for use in user
// applications. Similar to private use fields in HTTP, they can be used
// by end users for experimental or private applications, without needing
// to "standardize" the tensor ID (which would be done by submitting a PR
// to PyTorch to add your type ID).
//
// Private use tensor IDs are appropriate to use if you want to experiment
// with adding a new tensor type (without having to patch PyTorch first) or
// have a private, non-distributed application that needs to make use of a
// new tensor type. Private use tensor IDs are NOT appropriate to use for
// libraries intended to be distributed to further users: please contact
// the PyTorch developers to get a type ID registered in this case.
//
// We provide two classes of private user tensor id: regular DispatchKeys
// and Autograd DispatchKeys. DispatchKeys serve the role of ordinary "backend"
// DispatchKeys; if you were adding support for a new type of accelerator, you
// would use a backend DispatchKey, and ideally automatically reuse
// AutogradOther definitions already defined in PyTorch. AutogradPrivateUse
// DispatchKeys serve as "wrapper" DispatchKeys: they are only necessary for
// tensors that compose multiple internal tensors, and for cases when the
// built-in autograd formulas for operators are not appropriate.
static_assert(
(static_cast<uint8_t>(BackendComponent::EndOfBackendKeys) +
static_cast<uint8_t>(DispatchKey::EndOfFunctionalityKeys)) <= 64,
"The BackendComponent and DispatchKey enums (below EndOfFunctionalityKeys)"
" both map to backend and functionality bits"
" into a 64-bit bitmask; you must have less than 64 total entries between them");
// Check if a DispatchKey is an alias mapping to other runtime keys.
constexpr bool isAliasDispatchKey(DispatchKey k) {
return k >= DispatchKey::StartOfAliasKeys && k <= DispatchKey::EndOfAliasKeys;
}
// [Note: Per-Backend Functionality Dispatch Keys]
// Check if a DispatchKey is a per-backend functionality key
// Any functionalities that can be customized per-backend should be added here.
// These keys correspond to functionalities that can be customized individually
// per backend. While they only take up one bit in the `DispatchKeySet` bitset,
// they map to (# backends) slots in the operator table.
// Each of these keys also has a separate set of "runtime keys" in the dispatch
// key enum, per backend, which *do* map to the individual operator table slots.
// For example, the "Sparse" key maps to an individual bit in the
// DispatchKeySet, while `SparseCPU`, `SparseCUDA`, etc all map to individual
// slots in the runtime operator table.
constexpr bool isPerBackendFunctionalityKey(DispatchKey k) {
if (k == DispatchKey::Dense || k == DispatchKey::Quantized ||
k == DispatchKey::Sparse || k == DispatchKey::SparseCsr ||
k == DispatchKey::AutogradFunctionality ||
k == DispatchKey::NestedTensor) {
return true;
} else {
return false;
}
}
// Note that this includes Undefined in the total count.
// BUT EndOfFunctionalityKeys is its own (placeholder) key.
// e.g. Undefined=0, Dense=1, Sparse=2, EndOfFunctionalityKeys=3.
// In the above example, there are 3 total functionality keys.
constexpr uint8_t num_functionality_keys =
static_cast<uint8_t>(DispatchKey::EndOfFunctionalityKeys);
constexpr uint8_t num_backends =
static_cast<uint8_t>(BackendComponent::EndOfBackendKeys);
// Note [No More Than 16 Backends]
// Search for this note to find places in the code where the "no more than 16
// backends" invariant is baked in.
static_assert(
static_cast<uint8_t>(BackendComponent::EndOfBackendKeys) <= 16,
"BackendComponent currently only supports <= 16 backends. If we really need to extend this, \
there are a few places where this invariant is baked in");
constexpr uint8_t numPerBackendFunctionalityKeys() {
uint8_t count = 0;
for (uint8_t k = 0; k <= num_functionality_keys; ++k) {
if (isPerBackendFunctionalityKey(static_cast<DispatchKey>(k)))
++count;
}
return count;
}
#if defined(C10_MOBILE_TRIM_DISPATCH_KEYS)
// See [Note: Trimmed Mobile Dispatch Keys]
constexpr uint16_t num_runtime_entries = 8;
#else
constexpr uint16_t num_runtime_entries = num_functionality_keys +
(numPerBackendFunctionalityKeys() * (num_backends - 1));
#endif
// See Note [No More Than 16 Backends]
constexpr uint16_t full_backend_mask =
(static_cast<uint16_t>(1) << num_backends) - 1;
C10_API const char* toString(DispatchKey);
C10_API const char* toString(BackendComponent);
C10_API std::ostream& operator<<(std::ostream&, DispatchKey);
C10_API std::ostream& operator<<(std::ostream&, BackendComponent);
C10_API DispatchKey getAutogradKeyFromBackend(BackendComponent k);
// Parses a string into a dispatch key.
// If the string cannot be correctly parsed, throws an exception.
C10_API c10::DispatchKey parseDispatchKey(const std::string& k);
// These are some convenience identifiers for dispatch keys which are
// shorter to type than their long counterparts. Note that some of these
// dispatch keys directly correspond to DeviceType; and most APIs that
// accept DispatchKey also accept DeviceType; e.g.,
// torch::dispatch(torch::kCPU, ...) is also valid.
constexpr DispatchKey kAutograd = DispatchKey::Autograd;
// See Note [The Ordering of Per-Backend Dispatch Keys Matters!]
// This function relies on the invariant that the dispatch keys between
// StartOfDenseBackends and EndOfRuntimeBackendKeys are ordered by backend
// in the same order as `BackendComponent`.
constexpr BackendComponent toBackendComponent(DispatchKey k) {
if (k >= DispatchKey::StartOfDenseBackends &&
k <= DispatchKey::EndOfDenseBackends) {
return static_cast<BackendComponent>(
static_cast<uint8_t>(k) -
static_cast<uint8_t>(DispatchKey::StartOfDenseBackends));
} else if (
k >= DispatchKey::StartOfQuantizedBackends &&
k <= DispatchKey::EndOfQuantizedBackends) {
return static_cast<BackendComponent>(
static_cast<uint8_t>(k) -
static_cast<uint8_t>(DispatchKey::StartOfQuantizedBackends));
} else if (
k >= DispatchKey::StartOfSparseBackends &&
k <= DispatchKey::EndOfSparseBackends) {
return static_cast<BackendComponent>(
static_cast<uint8_t>(k) -
static_cast<uint8_t>(DispatchKey::StartOfSparseBackends));
} else if (
k >= DispatchKey::StartOfSparseCsrBackends &&
k <= DispatchKey::EndOfSparseCsrBackends) {
return static_cast<BackendComponent>(
static_cast<uint8_t>(k) -
static_cast<uint8_t>(DispatchKey::StartOfSparseCsrBackends));
} else if (
k >= DispatchKey::StartOfNestedTensorBackends &&
k <= DispatchKey::EndOfNestedTensorBackends) {
return static_cast<BackendComponent>(
static_cast<uint8_t>(k) -
static_cast<uint8_t>(DispatchKey::StartOfNestedTensorBackends));
} else if (
k >= DispatchKey::StartOfAutogradFunctionalityBackends &&
k <= DispatchKey::EndOfAutogradFunctionalityBackends) {
return static_cast<BackendComponent>(
static_cast<uint8_t>(k) -
static_cast<uint8_t>(
DispatchKey::StartOfAutogradFunctionalityBackends));
} else {
return BackendComponent::InvalidBit;
}
}
constexpr DispatchKey toFunctionalityKey(DispatchKey k) {
if (k <= DispatchKey::EndOfFunctionalityKeys) {
return k;
} else if (k <= DispatchKey::EndOfDenseBackends) {
return DispatchKey::Dense;
} else if (k <= DispatchKey::EndOfQuantizedBackends) {
return DispatchKey::Quantized;
} else if (k <= DispatchKey::EndOfSparseBackends) {
return DispatchKey::Sparse;
} else if (k <= DispatchKey::EndOfSparseCsrBackends) {
return DispatchKey::SparseCsr;
} else if (k <= DispatchKey::EndOfNestedTensorBackends) {
return DispatchKey::NestedTensor;
} else if (k <= DispatchKey::EndOfAutogradFunctionalityBackends) {
return DispatchKey::AutogradFunctionality;
} else {
return DispatchKey::Undefined;
}
}
BackendComponent toBackendComponent(DeviceType device_type);
// Given (DispatchKey::Dense, BackendComponent::CUDABit), returns
// DispatchKey::CUDA.
// See Note [The Ordering of Per-Backend Dispatch Keys Matters!]
// This function relies on the invariant that the dispatch keys between
// StartOfDenseBackends and EndOfRuntimeBackendKeys are ordered by backend
// in the same order as `BackendComponent`.
constexpr DispatchKey toRuntimePerBackendFunctionalityKey(
DispatchKey functionality_k,
BackendComponent backend_k) {
if (functionality_k == DispatchKey::Dense) {
return static_cast<DispatchKey>(
static_cast<uint8_t>(DispatchKey::StartOfDenseBackends) +
static_cast<uint8_t>(backend_k));
}
if (functionality_k == DispatchKey::Sparse) {
return static_cast<DispatchKey>(
static_cast<uint8_t>(DispatchKey::StartOfSparseBackends) +
static_cast<uint8_t>(backend_k));
}
if (functionality_k == DispatchKey::SparseCsr) {
return static_cast<DispatchKey>(
static_cast<uint8_t>(DispatchKey::StartOfSparseCsrBackends) +
static_cast<uint8_t>(backend_k));
}
if (functionality_k == DispatchKey::Quantized) {
return static_cast<DispatchKey>(
static_cast<uint8_t>(DispatchKey::StartOfQuantizedBackends) +
static_cast<uint8_t>(backend_k));
}
if (functionality_k == DispatchKey::NestedTensor) {
return static_cast<DispatchKey>(
static_cast<uint8_t>(DispatchKey::StartOfNestedTensorBackends) +
static_cast<uint8_t>(backend_k));
}
if (functionality_k == DispatchKey::AutogradFunctionality) {
return static_cast<DispatchKey>(
static_cast<uint8_t>(
DispatchKey::StartOfAutogradFunctionalityBackends) +
static_cast<uint8_t>(backend_k));
}
return DispatchKey::Undefined;
}
} // namespace c10
namespace torch {
// Expose the constant, but not the TYPE (DispatchKey is an implementation
// detail!)
// NOLINTNEXTLINE(misc-unused-using-decls)
using c10::kAutograd;
} // namespace torch
// NB: You really shouldn't use this instance; this enum is guaranteed
// to be pretty small so a regular array should be acceptable.
namespace std {
template <>
struct hash<c10::DispatchKey> {
typedef size_t result_type;
typedef c10::DispatchKey argument_type;
size_t operator()(c10::DispatchKey x) const {
return static_cast<size_t>(x);
}
};
} // namespace std