forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAllocator.h
319 lines (292 loc) · 10.4 KB
/
Allocator.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#pragma once
#include <cstddef>
#include <cstdint>
#include <functional>
#include <memory>
#include <utility>
#include <c10/core/Device.h>
#include <c10/core/DeviceType.h>
#include <c10/macros/Export.h>
#include <c10/macros/Macros.h>
#include <c10/util/Exception.h>
#include <c10/util/ThreadLocalDebugInfo.h>
#include <c10/util/UniqueVoidPtr.h>
namespace c10 {
// A DataPtr is a unique pointer (with an attached deleter and some
// context for the deleter) to some memory, which also records what
// device is for its data.
//
// nullptr DataPtrs can still have a nontrivial device; this allows
// us to treat zero-size allocations uniformly with non-zero allocations.
//
class C10_API DataPtr {
private:
c10::detail::UniqueVoidPtr ptr_;
Device device_;
public:
// Choice of CPU here is arbitrary; if there's an "undefined" device
// we could use that too
DataPtr() : ptr_(), device_(DeviceType::CPU) {}
DataPtr(void* data, Device device) : ptr_(data), device_(device) {}
DataPtr(void* data, void* ctx, DeleterFnPtr ctx_deleter, Device device)
: ptr_(data, ctx, ctx_deleter), device_(device) {}
void* operator->() const {
return ptr_.get();
}
void clear() {
ptr_.clear();
}
void* get() const {
return ptr_.get();
}
void* mutable_get() {
return ptr_.get();
}
void* get_context() const {
return ptr_.get_context();
}
void* release_context() {
return ptr_.release_context();
}
std::unique_ptr<void, DeleterFnPtr>&& move_context() {
return ptr_.move_context();
}
operator bool() const {
return static_cast<bool>(ptr_);
}
template <typename T>
T* cast_context(DeleterFnPtr expected_deleter) const {
return ptr_.cast_context<T>(expected_deleter);
}
DeleterFnPtr get_deleter() const {
return ptr_.get_deleter();
}
/**
* Compare the deleter in a DataPtr to expected_deleter.
* If it matches, replace the deleter with new_deleter
* and return true; otherwise, does nothing and returns
* false.
*
* In general, it is not safe to unconditionally set the
* deleter on a DataPtr, because you don't know what
* the deleter is, and thus will have a hard time properly
* disposing of the deleter without storing the original
* deleter (this is difficult to do, because DeleterFnPtr
* is not a closure, and because the context on DataPtr is
* only a single word, you generally don't have enough
* space to store both the original deleter and its context).
* However, in some cases, you know /exactly/ what the deleter
* is, and you have a new deleter that manually wraps
* the old one. In this case, you can safely swap the deleter
* after asserting that the deleters line up.
*
* What are the requirements on new_deleter? It must still
* properly dispose of the void* pointer passed in as its argument,
* where void* is whatever the context of the original deleter
* is. So in general, you expect the new deleter to look something
* like this:
*
* [](void* ptr) {
* some_new_stuff(ptr);
* get_orig_allocator()->raw_deleter(ptr);
* }
*
* Note that it won't work to close over the original
* allocator; you don't have enough space to do that! Also,
* it's unsafe to assume that the passed in pointer in
* question is the memory pointer in question; it might not
* be; be sure to read the source code of the Allocator
* in question to confirm this.
*/
C10_NODISCARD bool compare_exchange_deleter(
DeleterFnPtr expected_deleter,
DeleterFnPtr new_deleter) {
return ptr_.compare_exchange_deleter(expected_deleter, new_deleter);
}
Device device() const {
return device_;
}
// Unsafely mutates the device on a DataPtr. Under normal use,
// you should never actually need to call this function.
// We need this for the implementation of the hack detailed
// in Note [Masquerading as CUDA]
void unsafe_set_device(Device device) {
device_ = device;
}
};
// NB: Device is NOT tested for here; a CUDA nullptr is as much a nullptr as a
// CPU nullptr
inline bool operator==(const DataPtr& dp, std::nullptr_t) noexcept {
return !dp;
}
inline bool operator==(std::nullptr_t, const DataPtr& dp) noexcept {
return !dp;
}
inline bool operator!=(const DataPtr& dp, std::nullptr_t) noexcept {
return dp;
}
inline bool operator!=(std::nullptr_t, const DataPtr& dp) noexcept {
return dp;
}
// Note [raw_allocate/raw_deallocate and Thrust]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Thrust's support for custom allocators requires us to write something
// like this:
//
// class ThrustAllocator {
// char* allocate(size_t);
// void deallocate(char*, size_t);
// };
//
// This is not good for our unique_ptr based allocator interface, as
// there is no way to get to the context when we free.
//
// However, in some cases the context is exactly the same as
// the data pointer. In this case, we can support the "raw"
// allocate and deallocate interface. This is what
// raw_deleter signifies. By default, it returns a nullptr, which means that
// the raw interface is not implemented. Be sure to implement it whenever
// possible, or the raw interface will incorrectly reported as unsupported,
// when it is actually possible.
struct C10_API Allocator {
virtual ~Allocator() = default;
virtual DataPtr allocate(size_t n) = 0;
// Clones an allocation that came from this allocator.
//
// To perform the copy, this function calls `copy_data`, which
// must be implemented by derived classes.
//
// Note that this explicitly ignores any context that may have been
// attached to the input data.
//
// Requires: input data was allocated by the same allocator.
DataPtr clone(const void* data, std::size_t n);
// Checks if DataPtr has a simple context, not wrapped with any out of the
// ordinary contexts.
virtual bool is_simple_data_ptr(const DataPtr& data_ptr) const;
// If this returns a non nullptr, it means that allocate()
// is guaranteed to return a unique_ptr with this deleter attached;
// it means the rawAllocate and rawDeallocate APIs are safe to use.
// This function MUST always return the same BoundDeleter.
virtual DeleterFnPtr raw_deleter() const {
return nullptr;
}
void* raw_allocate(size_t n) {
auto dptr = allocate(n);
AT_ASSERT(dptr.get() == dptr.get_context());
return dptr.release_context();
}
void raw_deallocate(void* ptr) {
auto d = raw_deleter();
AT_ASSERT(d);
d(ptr);
}
// Copies data from one allocation to another.
// Pure virtual, so derived classes must define behavior.
// Derived class implementation can simply call `default_copy_data`
// to use `std::memcpy`.
//
// Requires: src and dest were allocated by this allocator
// Requires: src and dest both have length >= count
virtual void copy_data(void* dest, const void* src, std::size_t count)
const = 0;
protected:
// Uses `std::memcpy` to copy data.
// Child classes can use this as `copy_data` when an alternative copy
// API is not needed.
void default_copy_data(void* dest, const void* src, std::size_t count) const;
};
// This context is used to generate DataPtr which have arbitrary
// std::function deleters associated with them. In some user facing
// functions, we give a (user-friendly) interface for constructing
// tensors from external data which take an arbitrary std::function
// deleter. Grep for InefficientStdFunctionContext to find these
// occurrences.
//
// This context is inefficient because we have to do a dynamic
// allocation InefficientStdFunctionContext, on top of the dynamic
// allocation which is implied by std::function itself.
struct C10_API InefficientStdFunctionContext {
void* ptr_;
std::function<void(void*)> deleter_;
InefficientStdFunctionContext(void* ptr, std::function<void(void*)> deleter)
: ptr_(ptr), deleter_(std::move(deleter)) {}
~InefficientStdFunctionContext() {
if (deleter_) {
deleter_(ptr_);
}
}
static DataPtr makeDataPtr(
void* ptr,
std::function<void(void*)> deleter,
Device device);
};
/** Set the allocator for DeviceType `t`. The passed in allocator pointer is
* expected to have static lifetime; this function does NOT take ownership
* of the raw pointer. (The reason for this is to prevent existing pointers
* to an allocator of a particular device from being invalidated when
* SetAllocator is called.)
*
* Also note that this is not thread-safe, and we assume this function will
* only be called during initialization.
*
* The 'priority' flag is introduced when we want to overwrite the default
* allocator, since the allocators are set statically. The default priority
* is 0, which means the lowest. Only higher or equal priority can overwrite
* existing ones.
*/
C10_API void SetAllocator(DeviceType t, Allocator* alloc, uint8_t priority = 0);
C10_API Allocator* GetAllocator(const DeviceType& t);
template <DeviceType t>
struct AllocatorRegisterer {
explicit AllocatorRegisterer(Allocator* alloc) {
SetAllocator(t, alloc);
}
};
#define REGISTER_ALLOCATOR(t, f) \
namespace { \
static c10::AllocatorRegisterer<t> g_allocator_d(f); \
}
// An interface for reporting thread local memory usage
// per device
struct C10_API MemoryReportingInfoBase : public c10::DebugInfoBase {
MemoryReportingInfoBase();
~MemoryReportingInfoBase() override = default;
/**
* alloc_size corresponds to the size of the ptr.
*
* total_allocated corresponds to total allocated memory.
*
* total_reserved corresponds to total size of memory pool, both used and
* unused, if applicable.
*/
virtual void reportMemoryUsage(
void* ptr,
int64_t alloc_size,
size_t total_allocated,
size_t total_reserved,
Device device) = 0;
virtual void reportOutOfMemory(
int64_t alloc_size,
size_t total_allocated,
size_t total_reserved,
Device device);
virtual bool memoryProfilingEnabled() const = 0;
};
C10_API bool memoryProfilingEnabled();
C10_API void reportMemoryUsageToProfiler(
void* ptr,
int64_t alloc_size,
size_t total_allocated,
size_t total_reserved,
Device device);
C10_API void reportOutOfMemoryToProfiler(
int64_t alloc_size,
size_t total_allocated,
size_t total_reserved,
Device device);
// used to hold traceback information in allocators
struct GatheredContext {
virtual ~GatheredContext() = default;
};
} // namespace c10