|
| 1 | +from time import sleep |
| 2 | +import visualizer as vs |
| 3 | + |
| 4 | + |
| 5 | +class Array: |
| 6 | + |
| 7 | + def __init__(self, values): |
| 8 | + self.values = list(values) |
| 9 | + |
| 10 | + def swap(self, index1, index2): |
| 11 | + self.values[index2], self.values[index1] = self.values[index1], self.values[index2] |
| 12 | + vs.plot(self.values) |
| 13 | + |
| 14 | + def set(self, index, num): |
| 15 | + self.values[index] = num |
| 16 | + vs.plot(self.values) |
| 17 | + |
| 18 | + def getLen(self): |
| 19 | + return len(self.values) |
| 20 | + |
| 21 | + |
| 22 | +def bubble_sort(nums): # n^2 |
| 23 | + # We set swapped to True so the loop looks runs at least once |
| 24 | + swapped = True |
| 25 | + while swapped: |
| 26 | + swapped = False |
| 27 | + for i in range(nums.getLen() - 1): |
| 28 | + if nums.values[i] > nums.values[i + 1]: |
| 29 | + # Swap the elements |
| 30 | + nums.swap(i, i + 1) |
| 31 | + # Set the flag to True so we'll loop again |
| 32 | + swapped = True |
| 33 | + |
| 34 | + |
| 35 | +def selection_sort(nums): # n^2 |
| 36 | + # This value of i corresponds to how many values were sorted |
| 37 | + for i in range(nums.getLen()): |
| 38 | + # We assume that the first item of the unsorted segment is the smallest |
| 39 | + lowest_value_index = i |
| 40 | + # This loop iterates over the unsorted items |
| 41 | + for j in range(i + 1, nums.getLen()): |
| 42 | + if nums.values[j] < nums.values[lowest_value_index]: |
| 43 | + lowest_value_index = j |
| 44 | + # Swap values of the lowest unsorted element with the first unsorted |
| 45 | + # element |
| 46 | + nums.swap(i, lowest_value_index) |
| 47 | + |
| 48 | + |
| 49 | +def insertion_sort(nums): # n^2 |
| 50 | + # Start on the second element as we assume the first element is sorted |
| 51 | + for i in range(1, nums.getLen()): |
| 52 | + item_to_insert = nums.values[i] |
| 53 | + # And keep a reference of the index of the previous element |
| 54 | + j = i - 1 |
| 55 | + # Move all items of the sorted segment forward if they are larger than |
| 56 | + # the item to insert |
| 57 | + while j >= 0 and nums.values[j] > item_to_insert: |
| 58 | + nums.set(j + 1, nums.values[j]) |
| 59 | + j -= 1 |
| 60 | + # Insert the item |
| 61 | + nums.set(j + 1, item_to_insert) |
| 62 | + |
| 63 | + |
| 64 | +def heap_sort(nums): # n * logn |
| 65 | + |
| 66 | + def heapify(nums, heap_size, root_index): |
| 67 | + # Assume the index of the largest element is the root index |
| 68 | + largest = root_index |
| 69 | + left_child = (2 * root_index) + 1 |
| 70 | + right_child = (2 * root_index) + 2 |
| 71 | + |
| 72 | + # If the left child of the root is a valid index, and the element is greater |
| 73 | + # than the current largest element, then update the largest element |
| 74 | + if left_child < heap_size and nums.values[left_child] > nums.values[largest]: |
| 75 | + largest = left_child |
| 76 | + |
| 77 | + # Do the same for the right child of the root |
| 78 | + if right_child < heap_size and nums.values[right_child] > nums.values[largest]: |
| 79 | + largest = right_child |
| 80 | + |
| 81 | + # If the largest element is no longer the root element, swap them |
| 82 | + if largest != root_index: |
| 83 | + nums.swap(root_index, largest) |
| 84 | + # Heapify the new root element to ensure it's the largest |
| 85 | + heapify(nums, heap_size, largest) |
| 86 | + |
| 87 | + n = nums.getLen() |
| 88 | + |
| 89 | + # Create a Max Heap from the list |
| 90 | + # The 2nd argument of range means we stop at the element before -1 i.e. |
| 91 | + # the first element of the list. |
| 92 | + # The 3rd argument of range means we iterate backwards, reducing the count |
| 93 | + # of i by 1 |
| 94 | + for i in range(n, -1, -1): |
| 95 | + heapify(nums, n, i) |
| 96 | + |
| 97 | + # Move the root of the max heap to the end of |
| 98 | + for i in range(n - 1, 0, -1): |
| 99 | + nums.swap(i, 0) |
| 100 | + heapify(nums, i, 0) |
| 101 | + |
| 102 | + |
| 103 | +def merge_sort(nums): # n * logn |
| 104 | + |
| 105 | + def merge(left_list, right_list): |
| 106 | + sorted_list = [] |
| 107 | + left_list_index = right_list_index = 0 |
| 108 | + |
| 109 | + # We use the list lengths often, so its handy to make variables |
| 110 | + left_list_length, right_list_length = len(left_list), len(right_list) |
| 111 | + |
| 112 | + for _ in range(left_list_length + right_list_length): |
| 113 | + if left_list_index < left_list_length and right_list_index < right_list_length: |
| 114 | + # We check which value from the start of each list is smaller |
| 115 | + # If the item at the beginning of the left list is smaller, add it |
| 116 | + # to the sorted list |
| 117 | + if left_list[left_list_index] <= right_list[right_list_index]: |
| 118 | + sorted_list.append(left_list[left_list_index]) |
| 119 | + left_list_index += 1 |
| 120 | + # If the item at the beginning of the right list is smaller, add it |
| 121 | + # to the sorted list |
| 122 | + else: |
| 123 | + sorted_list.append(right_list[right_list_index]) |
| 124 | + right_list_index += 1 |
| 125 | + |
| 126 | + # If we've reached the end of the of the left list, add the elements |
| 127 | + # from the right list |
| 128 | + elif left_list_index == left_list_length: |
| 129 | + sorted_list.append(right_list[right_list_index]) |
| 130 | + right_list_index += 1 |
| 131 | + # If we've reached the end of the of the right list, add the elements |
| 132 | + # from the left list |
| 133 | + elif right_list_index == right_list_length: |
| 134 | + sorted_list.append(left_list[left_list_index]) |
| 135 | + left_list_index += 1 |
| 136 | + |
| 137 | + return sorted_list |
| 138 | + |
| 139 | + # If the list is a single element, return it |
| 140 | + if nums.getLen() <= 1: |
| 141 | + return nums |
| 142 | + |
| 143 | + # Use floor division to get midpoint, indices must be integers |
| 144 | + mid = nums.getLen() // 2 |
| 145 | + |
| 146 | + # Sort and merge each half |
| 147 | + left_list = merge_sort(nums.values[:mid]) |
| 148 | + right_list = merge_sort(nums.values[mid:]) |
| 149 | + |
| 150 | + # Merge the sorted lists into a new one |
| 151 | + return merge(left_list, right_list) |
| 152 | + |
| 153 | + |
| 154 | +def quick_sort(nums): # n^2 |
| 155 | + def partition(nums, low, high): |
| 156 | + # We select the middle element to be the pivot. Some implementations select |
| 157 | + # the first element or the last element. Sometimes the median value becomes |
| 158 | + # the pivot, or a random one. There are many more strategies that can be |
| 159 | + # chosen or created. |
| 160 | + pivot = nums.values[(low + high) // 2] |
| 161 | + i = low - 1 |
| 162 | + j = high + 1 |
| 163 | + while True: |
| 164 | + i += 1 |
| 165 | + while nums.values[i] < pivot: |
| 166 | + i += 1 |
| 167 | + |
| 168 | + j -= 1 |
| 169 | + while nums.values[j] > pivot: |
| 170 | + j -= 1 |
| 171 | + |
| 172 | + if i >= j: |
| 173 | + return j |
| 174 | + |
| 175 | + # If an element at i (on the left of the pivot) is larger than the |
| 176 | + # element at j (on right right of the pivot), then swap them |
| 177 | + nums.swap(j, i) |
| 178 | + |
| 179 | + # Create a helper function that will be called recursively |
| 180 | + def _quick_sort(items, low, high): |
| 181 | + if low < high: |
| 182 | + # This is the index after the pivot, where our lists are split |
| 183 | + split_index = partition(items, low, high) |
| 184 | + _quick_sort(items, low, split_index) |
| 185 | + _quick_sort(items, split_index + 1, high) |
| 186 | + |
| 187 | + _quick_sort(nums, 0, nums.getLen() - 1) |
0 commit comments